6,941 research outputs found

    A Free-Form Lensing Grid Solution for A1689 with New Mutiple Images

    Get PDF
    Hubble Space Telescope imaging of the galaxy cluster Abell 1689 has revealed an exceptional number of strongly lensed multiply-imaged galaxies, including high-redshift candidates. Previous studies have used this data to obtain the most detailed dark matter reconstructions of any galaxy cluster to date, resolving substructures ~25 kpc across. We examine Abell 1689 (hereafter, A1689) non-parametrically, combining strongly lensed images and weak distortions from wider field Subaru imaging, and we incorporate member galaxies to improve the lens solution. Strongly lensed galaxies are often locally affected by member galaxies, however, these perturbations cannot be recovered in grid based reconstructions because the lensing information is too sparse to resolve member galaxies. By adding luminosity-scaled member galaxy deflections to our smooth grid we can derive meaningful solutions with sufficient accuracy to permit the identification of our own strongly lensed images, so our model becomes self consistent. We identify 11 new multiply lensed system candidates and clarify previously ambiguous cases, in the deepest optical and NIR data to date from Hubble and Subaru. Our improved spatial resolution brings up new features not seen when the weak and strong lensing effects are used separately, including clumps and filamentary dark matter around the main halo. Our treatment means we can obtain an objective mass ratio between the cluster and galaxy components, for examining the extent of tidal stripping of the luminous member galaxies. We find a typical mass-to-light ratios of M/L_B = 21 inside the r<1 arcminute region that drops to M/L_B = 17 inside the r<40 arcsecond region. Our model independence means we can objectively evaluate the competitiveness of stacking cluster lenses for defining the geometric lensing-distance-redshift relation in a model independent way.Comment: 23 pages with 25 figures Replced with MNRAS submitted version. Some figures have been corrected and minor text edit

    Preparation of Dipteran Larvae for Scanning Electron Microscopy with Special Reference to Myiasigen Dipteran Species

    Get PDF
    Although controversy exists concerning the role of chemical fixatives in scanning electron microscopy (SEM) studies of Dipteran larvae, we have observed that filtered 10% formaldehyde solution gives excellent results as a preservative. After immersing in vivo in formaldehyde, the larvae material is preserved for prolonged periods (up to 8 months), before examination with SEM. As a fixative, formaldehyde preserves the structure of the larval cuticle and produces no visible artifacts. Moreover, postfixation is not necessary. Due to pecularities of the way of life of Wohlfahrtia magnifica (principally the accumulations of necrotic tissue, purulent particles, and other types of substances that often adhere to the numerous spines of larvae), this species must be cleaned before examination by SEM. Manual cleaning with alternating bidistilled water and 0.9% saline solution proved to be a rapid, easy and inexpensive method that gave good results. Both lyophilization drying and critical point drying were used before sputtering the material. While lyophilization drying proved to be the most effective method for instars II and III, critical point drying was the best technique for study of specimens belonging to instar I. The optimum time for drying and conditions for lyophilization and sputter-coating with gold were determined experimentally. Samples were mounted on SEM stubs with double-sided adhesive and silver conductive paint. The method proposed is easy and effective for the SEM study of larvae myiasis-producing diptera

    Strong Lensing Analysis of A1689 from Deep Advanced Camera Images

    Full text link
    We analyse deep multi-colour Advanced Camera images of the largest known gravitational lens, A1689. Radial and tangential arcs delineate the critical curves in unprecedented detail and many small counter-images are found near the center of mass. We construct a flexible light deflection field to predict the appearance and positions of counter-images. The model is refined as new counter-images are identified and incorporated to improve the model, yielding a total of 106 images of 30 multiply lensed background galaxies, spanning a wide redshift range, 1.0<<z<<5.5. The resulting mass map is more circular in projection than the clumpy distribution of cluster galaxies and the light is more concentrated than the mass within r<50kpc/hr<50kpc/h. The projected mass profile flattens steadily towards the center with a shallow mean slope of dlogΣ/dlogr0.55±0.1d\log\Sigma/d\log r \simeq -0.55\pm0.1, over the observed range, r<250kpc/h<250kpc/h, matching well an NFW profile, but with a relatively high concentration, Cvir=8.21.8+2.1C_{vir}=8.2^{+2.1}_{-1.8}. A softened isothermal profile (rcore=20±2r_{core}=20\pm2\arcs) is not conclusively excluded, illustrating that lensing constrains only projected quantities. Regarding cosmology, we clearly detect the purely geometric increase of bend-angles with redshift. The dependence on the cosmological parameters is weak due to the proximity of A1689, z=0.18z=0.18, constraining the locus, ΩM+ΩΛ1.2\Omega_M+\Omega_{\Lambda} \leq 1.2. This consistency with standard cosmology provides independent support for our model, because the redshift information is not required to derive an accurate mass map. Similarly, the relative fluxes of the multiple images are reproduced well by our best fitting lens model.Comment: Accepted by ApJ. For high quality figures see http://wise-obs.tau.ac.il/~kerens/A168

    Evidence for Ubiquitous, High-EW Nebular Emission in z~7 Galaxies: Towards a Clean Measurement of the Specific Star Formation Rate using a Sample of Bright, Magnified Galaxies

    Get PDF
    Growing observational evidence now indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z~5-7 galaxies observed with Spitzer. This line emission makes z~5-7 galaxies appear more massive, with lower specific star formation rates. However, corrections for this line emission have been very difficult to perform reliably due to huge uncertainties on the overall strength of such emission at z>~5.5. Here, we present the most direct observational evidence yet for ubiquitous high-EW [OIII]+Hbeta line emission in Lyman-break galaxies at z~7, while also presenting a strategy for an improved measurement of the sSFR at z~7. We accomplish this through the selection of bright galaxies in the narrow redshift window z~6.6-7.0 where the IRAC 4.5 micron flux provides a clean measurement of the stellar continuum light. Observed 4.5 micron fluxes in this window contrast with the 3.6 micron fluxes which are contaminated by the prominent [OIII]+Hbeta lines. To ensure a high S/N for our IRAC flux measurements, we consider only the brightest (H_{160}<26 mag) magnified galaxies we have identified in CLASH and other programs targeting galaxy clusters. Remarkably, the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5]=-0.9+/-0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [OIII]+Hbeta be greater than 637 Angstroms for the average source. The bluest four sources from our seven-source sample require an even more extreme EW of 1582 Angstroms. Our derived lower limit for the mean [OIII]+Hbeta EW could underestimate the true EW by ~2x based on a simple modeling of the redshift distribution of our sources. We can also set a robust lower limit of >~4 Gyr^-1 on the specific star formation rates based on the mean SED for our seven-source sample. (abridged)Comment: 9 pages, 6 figures, 1 table, submitted to the Astrophysical Journa

    Sub-mm detection of a high redshift Type 2 QSO

    Full text link
    We report on the first SCUBA detection of a Type 2 QSO at z=3.660 in the Chandra Deep Field South. This source is X-ray absorbed, shows only narrow emission lines in the optical spectrum and is detected in the sub-mm: it is the ideal candidate in an evolution scheme for AGN (e.g. Fabian (1999); Page et al. (2004)) of an early phase corresponding to the main growth of the host galaxy and formation of the central black hole. The overall photometry (from the radio to the X-ray energy band) of this source is well reproduced by the spectral energy distribution (SED) of NGC 6240, while it is incompatible with the spectrum of a Type 1 QSO (3C273) or a starburst galaxy (Arp 220). Its sub-mm (850 \mu m) to X-ray (2 keV) spectral slope (alpha_SX) is close to the predicted value for a Compton-thick AGN in which only 1% of the nuclear emission emerges through scattering. Using the observed flux at 850 \mu m we have derived a SFR=550--680 Modot/yrandanestimateofthedustmass,M_odot/yr and an estimate of the dust mass, M_dust=4.2 10^8 M_odotComment: 6 Pages, 5 Figures, accepted for publication in MNRA

    Deep Imaging of AXJ2019+112: The Luminosity of a ``Dark Cluster''

    Get PDF
    We detect a distant cluster of galaxies centered on the QSO lens and luminous X-ray source AXJ2019+112, a.k.a. ``The Dark Cluster'' (Hattori et al 1997). Using deep V,I Keck images and wide-field K_s imaging from the NTT, a tight red sequence of galaxies is identified within a radius of 0.2 h^{-1} Mpc of the known z=1.01 elliptical lensing galaxy. The sequence, which includes the central elliptical galaxy, has a slope in good agreement with the model predictions of Kodama et al (1998) for z~1. We estimate the integrated rest-frame luminosity of the cluster to be L_V > 3.2 x 10^{11}h^{-2}L_{\sun} (after accounting for significant extinction at the low latitude of this field), more than an order of magnitude higher than previous estimates. The central region of the cluster is deconvolved using the technique of Magain, Courbin & Sohy (1998), revealing a thick central arc coincident with an extended radio source. All the observed lensing features are readily explained by differential magnification of a radio loud AGN by a shallow elliptical potential. The QSO must lie just outside the diamond caustic, producing two images, and the arc is a highly magnified image formed from a region close to the center of the host galaxy, projecting inside the caustic. The mass--to--light ratio within an aperture of 0.4 h ^{-1} Mpc is M_x/L_V= 224^{+112}_{-78}h(M/L_V)_{\sun}, using the X-ray temperature. The strong lens model yields a compatible value, M/L_V= 372^{+94}_{-94}h(M/L_V)_{\sun}, whereas an independent weak lensing analysis sets an upper limit of M/L_V <520 h(M/L_V)_{\sun}, typical of massive clusters.Comment: AAS Latex format, 24 pages, 9 figures. Fig 1a,b available at http://astro.berkeley.edu/~benitezn/cluster.html . Submitted to ApJ on August 15t
    corecore