19 research outputs found

    Formes d'ondes avancées et traitements itératifs pour les canaux non linéaires satellites

    Get PDF
    L'augmentation de l'efficacité spectrale des transmissions mono-porteuses sur un lien de diffusion par satellite est devenu un défi d'envergure afin de pallier la demande croissante en débits de transmission. Si des techniques émergentes de transmissions encouragent l'utilisation de modulations à ordre élevé telles que les modulations de phase et d'amplitude (APSK), certaines dégradations sont encourues lors du traitement à bord du satellite. En effet, en raison de l'utilisation d'amplificateurs de puissance ainsi que de filtres à mémoires, les modulations d'ordre élevé subissent des distorsions non-linéaires dues à la fluctuation de leur enveloppe, ce qui nécessite des traitements au sein de l'émetteur ou bien au sein du récepteur. Dans cette thèse, nous nous intéressons au traitement de l'interférence non-linéaire au sein du récepteur, avec une attention particulière aux égaliseurs itératifs qui améliorent les performances du système au prix d'une complexité élevée. A partir du modèle temporel des interférences non-linéaires induites par l'amplificateur de puissance, des algorithmes de réception optimaux et sous optimaux sont dérivés, et leurs performances comparées. Des égaliseurs à complexité réduite sont aussi étudiés dans le but d'atteindre un compromis performances-complexité satisfaisant. Ensuite, un modèle des non-linéarités est dérivé dans le domaine fréquentiel, et les égaliseurs correspondants sont présentés. Dans un second temps, nous analysons et dérivons des récepteurs itératifs pour l'interférence entre symboles non linéaire. L'objectif est d'optimiser les polynômes de distributions d'un code externe basé sur les codes de contrôle de parité à faible densité (LDPC) afin de coller au mieux à la sortie de l'égaliseur. Le récepteur ainsi optimisé atteint de meilleures performances comparé à un récepteur non optimisé pour le canal non-linéaire. Finalement, nous nous intéressons à une classe spécifique de techniques de transmissions mono-porteuse basée sur le multiplexage par division de fréquence (SC-OFDM) pour les liens satellites. L'avantage de ces formes d'ondes réside dans l'efficacité de leur égaliseur dans le domaine fréquentiel. Des formules analytiques de la densité spectrale de puissance et du rapport signal sur bruit et interférence sont dérivées et utilisées afin de prédire les performances du système. ABSTRACT : Increasing both the data rate and power efficiency of single carrier transmissions over broadcast satellite links has become a challenging issue to comply with the urging demand of higher transmission rates. If emerging transmission techniques encourage the use of high order modulations such as Amplitude and Phase Shift Keying (APSK) and Quadrature Amplitude Modulation (QAM), some channel impairments arise due to onboard satellite processing. Indeed, due to satellite transponder Power Amplifiers (PA) as well as transmission filters, high order modulations incur non linear distortions due to their high envelope fluctuations which require specific processing either at the transmitter or at the receiver. In this thesis, we investigate on non linear interference mitigation at the receiver with a special focus on iterative equalizers which dramatically enhance the performance at the cost of additional complexity. Based on the time domain model of the non linear interference induced by the PA, optimal and sub-optimal receiving algorithms are proposed and their performance compared. Low complexity implementations are also investigated for the sake of a better complexity-performance trade-off. Then, a non linear frequency domain model is derived and the corresponding frequency equalizers are investigated. In the second part, we analyse and design an iterative receiver for the non linear Inter Symbol Interference (ISI) channel. The objective is to optimize an outer Low Density Parity Check (LDPC) code distribution polynomials so as to best fit the inner equalizer Extrinsic information. The optimized receiver is shown to achieve better performance compared to a code only optimized for linear ISI channel. Finally, we investigate on a specific class of single carrier transmissions relying on Single Carrier Orthogonal Frequency Division Multiplexing (SCO-FDM) for satellite downlink. The advantage of such waveforms lies in their practical receiver implementation in the frequency domain. General analytical formulas of the power spectral density and signal to noise and interference ratio are derived and used to predict the bit error rate for frequency selective multiplexers

    Asymptotic Analysis and Design of Iterative Receivers for Non Linear ISI Channels

    Get PDF
    International audienceIn this paper, iterative receiver analysis and design for non linear satellite channels is investigated. To do so, an EXtrinsic Information Transfer (EXIT) chart-based optimization is applied using two major assumptions: the equalizer outputs follow a Gaussian Mixture distribution since we use non-binary modulations and partial interleavers are used between the Low Density Parity Check (LDPC) code and the mapper. Achievable rates, performance and thresholds of the optimized receiver are analysed. The objective in fine is to answer the question: Is it worth optimizing an iterative receiver for non linear satellite channels

    Neural Networks-Based Turbo Equalization of a Satellite Communication Channel

    Get PDF
    International audienceThis paper proposes neural networks-based turbo equalization (TEQ) applied to a non linear channel. Based on a Volterra model of the satellite non linear communication channel, we derive a soft input soft output (SISO) radial basis function (RBF) equalizer that can be used in an iterative equalization in order to improve the system performance. In particular, it is shown that the RBF-based TEQ is able to achieve its matched filter bound (MFB) within few iterations. The paper also proposes a blind implementation of the TEQ using a multilayer perceptron (MLP) as an adaptive model of the nonlinear channel. Asymptotic analysis as well as reduced complexity implementations are also presented and discussed

    On linear MMSE based turbo-equalization of nonlinear Volterra channels

    Get PDF
    International audienceThis article deals with Minimum Mean Square Error (MMSE) turbo equalization of nonlinear interference using a volterra series decomposition of the underlying nonlinear channel. Although it has been often argued that linear MMSE based equalization is unsuited for cancelling nonlinear interference, we show that this common belief is not true in a strict sense. By a proper derivation of the linear based MMSE soft equalizer, we are able to show that the underlying structure of the equalizer is equivalent to a Soft Interference Canceller (SIC) treating both the linear and nonlinear interference. Based on these results, approximations are provided for lowering the computational complexity. Links to previously proposed “nonlinear” SIC are emphasized showing that the previously proposed structures are nothing but approximations of a linear MMSE receiver applied to nonlinear ISI channels. Simulations show that significant improvements can be achieved by using the proposed exact and approximate MMSE based turbo-equalizers

    On Linear Frequency Domain Turbo-Equalization of Non Linear Volterra Channels

    Get PDF
    International audienceThis article deals with iterative Frequency Domain Equalization (FDE) for Single Carrier (SC) transmissions over Volterra non linear satellite channels. SC-FDE has gained much importance in recent research for its efficient implementation at the receiver and its interesting low Peak to Average Power Ratio (PAPR) at the transmitter. However, nearly saturated power amplifiers on board satellites generate linear and non linear Inter Symbol Interference (ISI) at the receiver. It is thus interesting to investigate the implementation of SC-FDE for non linear channels. To do so, a frequency domain equivalent satellite channel is derived based on the time domain Volterra series representation of the non linear channel. Then a Minimum Mean Square Error (MMSE)-based iterative frequency domain equalizer is designed. It is shown that the proposed equalizer consists of a Soft Interference Canceller (SIC) which subtracts both the linear and non-linear soft frequency symbols. The equalizer performance is then compared to the equivalent time domain implementation. Results show that a channel-memory independent efficient implementation is achieved at the price of a negligible spectral efficiency loss due to cyclic prefix insertion

    Analytical Expressions of Power Spectral Density for General Spectrally Shaped SC-FDMA Systems

    Get PDF
    In this work, Power Spectral Density (PSD) of different implementations of Single-Carrier Frequency Division Multiple Access (SC-FDMA) are investigated. First, a general model of spectrally shaped SC-FDMA transmission scheme is proposed. This scheme is shown to encompass different implementations of SC-FDMA including the classical Long Term Evolution (LTE) SC-FDMA waveform. Then analytical expressions of PSD are derived for both localised and interleaved FDMA using or not spectral shaping techniques based on the aforementioned general SC-FDMA system model. Finally, analytical results are validated through comparison with simulation estimated PSD

    Advanced waveforms and iterative processing for non linear satellite channels

    No full text
    L'augmentation de l'efficacité spectrale des transmissions mono-porteuses sur un lien de diffusion par satellite est devenu un défi d'envergure afin de pallier la demande croissante en débits de transmission. Si des techniques émergentes de transmissions encouragent l'utilisation de modulations à ordre élevé telles que les modulations de phase et d'amplitude (APSK), certaines dégradations sont encourues lors du traitement à bord du satellite. En effet, en raison de l'utilisation d'amplificateurs de puissance ainsi que de filtres à mémoires, les modulations d'ordre élevé subissent des distorsions non-linéaires dues à la fluctuation de leur enveloppe, ce qui nécessite des traitements au sein de l'émetteur ou bien au sein du récepteur. Dans cette thèse, nous nous intéressons au traitement de l'interférence non-linéaire au sein du récepteur, avec une attention particulière aux égaliseurs itératifs qui améliorent les performances du système au prix d'une complexité élevée. A partir du modèle temporel des interférences non-linéaires induites par l'amplificateur de puissance, des algorithmes de réception optimaux et sous optimaux sont dérivés, et leurs performances comparées. Des égaliseurs à complexité réduite sont aussi étudiés dans le but d'atteindre un compromis performances-complexité satisfaisant. Ensuite, un modèle des non-linéarités est dérivé dans le domaine fréquentiel, et les égaliseurs correspondants sont présentés. Dans un second temps, nous analysons et dérivons des récepteurs itératifs pour l'interférence entre symboles non linéaire. L'objectif est d'optimiser les polynômes de distributions d'un code externe basé sur les codes de contrôle de parité à faible densité (LDPC) afin de coller au mieux à la sortie de l'égaliseur. Le récepteur ainsi optimisé atteint de meilleures performances comparé à un récepteur non optimisé pour le canal non-linéaire. Finalement, nous nous intéressons à une classe spécifique de techniques de transmissions mono-porteuse basée sur le multiplexage par division de fréquence (SC-OFDM) pour les liens satellites. L'avantage de ces formes d'ondes réside dans l'efficacité de leur égaliseur dans le domaine fréquentiel. Des formules analytiques de la densité spectrale de puissance et du rapport signal sur bruit et interférence sont dérivées et utilisées afin de prédire les performances du système.Increasing both the data rate and power efficiency of single carrier transmissions over broadcast satellite links has become a challenging issue to comply with the urging demand of higher transmission rates. If emerging transmission techniques encourage the use of high order modulations such as Amplitude and Phase Shift Keying (APSK) and Quadrature Amplitude Modulation (QAM), some channel impairments arise due to onboard satellite processing. Indeed, due to satellite transponder Power Amplifiers (PA) as well as transmission filters, high order modulations incur non linear distortions due to their high envelope fluctuations which require specific processing either at the transmitter or at the receiver. In this thesis, we investigate on non linear interference mitigation at the receiver with a special focus on iterative equalizers which dramatically enhance the performance at the cost of additional complexity. Based on the time domain model of the non linear interference induced by the PA, optimal and sub-optimal receiving algorithms are proposed and their performance compared. Low complexity implementations are also investigated for the sake of a better complexity-performance trade-off. Then, a non linear frequency domain model is derived and the corresponding frequency equalizers are investigated. In the second part, we analyse and design an iterative receiver for the non linear Inter Symbol Interference (ISI) channel. The objective is to optimize an outer Low Density Parity Check (LDPC) code distribution polynomials so as to best fit the inner equalizer Extrinsic information. The optimized receiver is shown to achieve better performance compared to a code only optimized for linear ISI channel. Finally, we investigate on a specific class of single carrier transmissions relying on Single Carrier Orthogonal Frequency Division Multiplexing (SCO-FDM) for satellite downlink. The advantage of such waveforms lies in their practical receiver implementation in the frequency domain. General analytical formulas of the power spectral density and signal to noise and interference ratio are derived and used to predict the bit error rate for frequency selective multiplexers

    Propagation Experiment at Ka-Band in French Guiana: First Year of Measurements

    No full text
    International audienceONERA, the French Aerospace Lab, and CNES, the French Space Agency, are currently running a Ka-band propagation experiment at the Guiana Space Centre (CSG) in Kourou (French Guiana). A rain gauge and a beacon receiver able to record the 20.2 GHz beacon signal of the Amazonas 3 satellite have been deployed. The equipment is operational since January 1, 2017 and the duration of the experiment has been set to 3 years. This letter addresses some results of the first year of measurements (from January 2017 to December 2017). The annual and monthly Complementary Cumulative Distribution Functions of rainfall rate and rain attenuation are presented as well as a comparison with the rain attenuation prediction method recommended in ITU-R P.618-13
    corecore