11,916 research outputs found
Isotropic magnetometry with simultaneous excitation of orientation and alignment CPT resonances
Atomic magnetometers have very high absolute precision and sensitivity to
magnetic fields but suffer from a fundamental problem: the vectorial or
tensorial interaction of light with atoms leads to "dead zones", certain
orientations of magnetic field where the magnetometer loses its sensitivity. We
demonstrate a simple polarization modulation scheme that simultaneously creates
coherent population trapping (CPT) in orientation and alignment, thereby
eliminating dead zones. Using Rb in a 10 Torr buffer gas cell we measure
narrow, high-contrast CPT transparency peaks in all orientations and also show
absence of systematic effects associated with non-linear Zeeman splitting.Comment: 4 pages, 4 figure
The Birth-Death-Mutation process: a new paradigm for fat tailed distributions
Fat tailed statistics and power-laws are ubiquitous in many complex systems.
Usually the appearance of of a few anomalously successful individuals
(bio-species, investors, websites) is interpreted as reflecting some inherent
"quality" (fitness, talent, giftedness) as in Darwin's theory of natural
selection. Here we adopt the opposite, "neutral", outlook, suggesting that the
main factor explaining success is merely luck. The statistics emerging from the
neutral birth-death-mutation (BDM) process is shown to fit marvelously many
empirical distributions. While previous neutral theories have focused on the
power-law tail, our theory economically and accurately explains the entire
distribution. We thus suggest the BDM distribution as a standard neutral model:
effects of fitness and selection are to be identified by substantial deviations
from it
Suppression of Classical and Quantum Radiation Pressure Noise via Electro-Optic Feedback
We present theoretical results that demonstrate a new technique to be used to
improve the sensitivity of thermal noise measurements: intra-cavity intensity
stabilisation. It is demonstrated that electro-optic feedback can be used to
reduce intra-cavity intensity fluctuations, and the consequent radiation
pressure fluctuations, by a factor of two below the quantum noise limit. We
show that this is achievable in the presence of large classical intensity
fluctuations on the incident laser beam. The benefits of this scheme are a
consequence of the sub-Poissonian intensity statistics of the field inside a
feedback loop, and the quantum non-demolition nature of radiation pressure
noise as a readout system for the intra-cavity intensity fluctuations.Comment: 4 pages, 1 figur
Comment on ``Solidification of a Supercooled Liquid in a Narrow Channel''
Comment on PRL v. 86, p. 5084 (2001) [cond-mat/0101016]. We point out that
the authors' simulations are consistent with the known theory of steady-state
solutions in this system
Implicit Decomposition for Write-Efficient Connectivity Algorithms
The future of main memory appears to lie in the direction of new technologies
that provide strong capacity-to-performance ratios, but have write operations
that are much more expensive than reads in terms of latency, bandwidth, and
energy. Motivated by this trend, we propose sequential and parallel algorithms
to solve graph connectivity problems using significantly fewer writes than
conventional algorithms. Our primary algorithmic tool is the construction of an
-sized "implicit decomposition" of a bounded-degree graph on
nodes, which combined with read-only access to enables fast answers to
connectivity and biconnectivity queries on . The construction breaks the
linear-write "barrier", resulting in costs that are asymptotically lower than
conventional algorithms while adding only a modest cost to querying time. For
general non-sparse graphs on edges, we also provide the first writes
and operations parallel algorithms for connectivity and biconnectivity.
These algorithms provide insight into how applications can efficiently process
computations on large graphs in systems with read-write asymmetry
On the Propagation of Slip Fronts at Frictional Interfaces
The dynamic initiation of sliding at planar interfaces between deformable and
rigid solids is studied with particular focus on the speed of the slip front.
Recent experimental results showed a close relation between this speed and the
local ratio of shear to normal stress measured before slip occurs (static
stress ratio). Using a two-dimensional finite element model, we demonstrate,
however, that fronts propagating in different directions do not have the same
dynamics under similar stress conditions. A lack of correlation is also
observed between accelerating and decelerating slip fronts. These effects
cannot be entirely associated with static local stresses but call for a dynamic
description. Considering a dynamic stress ratio (measured in front of the slip
tip) instead of a static one reduces the above-mentioned inconsistencies.
However, the effects of the direction and acceleration are still present. To
overcome this we propose an energetic criterion that uniquely associates,
independently on the direction of propagation and its acceleration, the slip
front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure
Control theory for principled heap sizing
We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach
Pterodactyl: Thermal Protection System for Integrated Control Design of a Mechanically Deployed Entry Vehicle
The need for precision landing of high mass payloads on Mars and the return of sensitive samples from other planetary bodies to specific locations on Earth is driving the development of an innovative NASA technology referred to as the Deployable Entry Vehicle (DEV). A DEV has the potential to deliver an equivalent science payload with a stowed diameter 3 to 4 times smaller than a traditional rigid capsule configuration. However, the DEV design does not easily lend itself to traditional methods of directional control. The NASA Space Technology Mission Directorate (STMD)s Pterodactyl project is currently investigating the effectiveness of three different Guidance and Control (G&C) systems actuated flaps, Center of Gravity (CG) or mass movement, and Reaction Control System (RCS) for use with a DEV using the Adaptable, Deployable, Entry, and Placement Technology (ADEPT) design. This paper details the Thermal Protection System (TPS) design and associated mass estimation efforts for each of the G&C systems. TPS is needed for the nose cap of the DEV and the flaps of the actuated flap control system. The development of a TPS selection, sizing, and mass estimation method designed to deal with the varying requirements for the G&C options throughout the trajectory is presented. The paper discusses the methods used to i) obtain heating environments throughout the trajectory with respect to the chosen control system and resulting geometry; ii) determine a suitable TPS material; iii) produce TPS thickness estimations; and, iv) determine the final TPS mass estimation based on TPS thickness, vehicle control system, vehicle structure, and vehicle payload
Metastable Ar(1s\u3csub\u3e5\u3c/sub\u3e) Density Dependence on Pressure and Argon-helium Mixture in a High Pressure Radio Frequency Dielectric Barrier Discharge
Simulations of an α-mode radio frequency dielectric barrier discharge are performed for varying mixtures of argon and helium at pressures ranging from 200 to 500 Torr using both zero and one-dimensional models. Metastable densities are analyzed as a function of argon-helium mixture and pressure to determine the optimal conditions, maximizing metastable density for use in an optically pumped rare gas laser. Argon fractions corresponding to the peak metastable densities are found to be pressure dependent, shifting from approximately 15% Ar in He at 200 Torr to 10% at 500 Torr. A decrease in metastable density is observed as pressure is increased due to a diminution in the reduced electric field and a quadratic increase in metastable loss rates through Ar*2 formation. A zero-dimensional effective direct current model of the dielectric barrier discharge is implemented, showing agreement with the trends predicted by the one-dimensional fluid model in the bulk plasma
- …