226 research outputs found

    Shubnikov-de Haas oscillations in SrTiO3\LaAlO3 interface

    Full text link
    Quantum magnetic oscillations in SrTiO3/\LaAlO3 interface are observed. The evolution of their frequency and amplitude at various gate voltages and temperatures is studied. The data are consistent with the Shubnikov de-Haas theory. The Hall resistivity rho exhibits nonlinearity at low magnetic field. It is fitted assuming multiple carrier contributions. The comparison between the mobile carrier density inferred from the Hall data and the oscillation frequency suggests multiple valley and spin degeneracy. The small amplitude of the oscillations is discussed in the framework of the multiple band scenario

    Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magneto-transport study

    Full text link
    The superconducting transition temperature, Tc, of the SrTiO3/LaAlO3 interface was varied by the electric field effect. The anisotropy of the upper critical field and the normal state magneto-transport were studied as a function of gate voltage. The spin-orbit coupling energy is extracted. This tunable energy scale is used to explain the strong gate dependence of the mobility and of the anomalous Hall signal observed. The spin-orbit coupling energy follows Tc for the electric field range under study

    Phase coherent transport in SrTiO3/LaAlO3 interfaces

    Full text link
    The two dimensional electron gas formed between the two band insulators SrTiO3 and LaAlO3 exhibits a variety of interesting physical properties which make it an appealing material for use in future spintronics and/or quantum computing devices. For this kind of applications electrons have to retain their phase memory for sufficiently long times or length. Using a mesoscopic size device we were able to extract the phase coherence length, and its temperature variation. We find the dephasing rate to have a power law dependence on temperature. The power depends on the temperature range studied and sheet resistance as expected from dephasing due to strong electron-electron interactions.Comment: Submitted to Phys. Rev

    Anomalous magneto-transport at the superconducting interface between LaAlO3 and SrTiO3

    Full text link
    The magnetoresistance as a function of temperature and field for atomically flat interfaces between 8 unit cells of LaAlO3 and SrTiO3 is reported. Anomalous anisotropic behavior of the magnetoresistance is observed below 30 K for superconducting samples with carrier concentration of 3.5\times10^13 cm^-2 . We associate this behavior to a magnetic order formed at the interface.Comment: 2 pages, 3 figures. Proceedings of the 9th International Conference on Materials and Mechanisms of Superconductivit

    Measuring Hall Viscosity of Graphene's Electron Fluid

    Full text link
    Materials subjected to a magnetic field exhibit the Hall effect, a phenomenon studied and understood in fine detail. Here we report a qualitative breach of this classical behavior in electron systems with high viscosity. The viscous fluid in graphene is found to respond to non-quantizing magnetic fields by producing an electric field opposite to that generated by the classical Hall effect. The viscous contribution is large and identified by studying local voltages that arise in the vicinity of current-injecting contacts. We analyze the anomaly over a wide range of temperatures and carrier densities and extract the Hall viscosity, a dissipationless transport coefficient that was long identified theoretically but remained elusive in experiment. Good agreement with theory suggests further opportunities for studying electron magnetohydrodynamics.Comment: 18 pages, 9 figure

    Negative local resistance caused by viscous electron backflow in graphene

    Full text link
    Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above liquid nitrogen temperature. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this transport regime. We find that doped graphene exhibits an anomalous (negative) voltage drop near current injection contacts, which is attributed to the formation of submicrometer-size whirlpools in the electron flow. The viscosity of graphene's electron liquid is found to be ~0.1 m2^2 /s, an order of magnitude larger than that of honey, in agreement with many-body theory. Our work shows a possibility to study electron hydrodynamics using high quality graphene

    Micromagnetometry of two-dimensional ferromagnets

    Full text link
    The study of atomically thin ferromagnetic crystals has led to the discovery of unusual magnetic behaviour and provided insight into the magnetic properties of bulk materials. However, the experimental techniques that have been used to explore ferromagnetism in such materials cannot probe the magnetic field directly. Here, we show that ballistic Hall micromagnetometry can be used to measure the magnetization of individual two-dimensional ferromagnets. Our devices are made by van der Waals assembly in such a way that the investigated ferromagnetic crystal is placed on top of a multi-terminal Hall bar made from encapsulated graphene. We use the micromagnetometry technique to study atomically thin chromium tribromide (CrBr3). We find that the material remains ferromagnetic down to monolayer thickness and exhibits strong out-of-plane anisotropy. We also find that the magnetic response of CrBr3 varies little with the number of layers and its temperature dependence cannot be described by the simple Ising model of two-dimensional ferromagnetism.Comment: 19 pages, 12 figure

    A Universal Critical Density Underlying the Physics of Electrons at the LaAlO3/SrTiO3 Interface

    Full text link
    The two-dimensional electron system formed at the interface between the insulating oxides LaAlO3 and SrTiO3 exhibits ferromagnetism, superconductivity, and a wide range of unique magnetotransport properties. A key challenge is to find a unified microscopic mechanism that underlies these emergent phenomena. Here we show that a universal Lifshitz transition between d-orbitals lies at the core of the observed transport phenomena in this system. Our measurements find a critical electronic density at which the transport switches from single to multiple carriers. This density has a universal value, independent of the LaAlO3 thickness and electron mobility. The characteristics of the transition, its universality, and its compatibility with spectroscopic measurements establish it as a transition between d-orbitals of different symmetries. A simple band model, allowing for spin-orbit coupling at the atomic level, connects the observed universal transition to a range of reported magnetotransport properties. Interestingly, we also find that the maximum of the superconducting transition temperature occurs at the same critical transition, indicating a possible connection between the two phenomena. Our observations demonstrate that orbital degeneracies play an important role in the fascinating behavior observed so far in these oxides
    corecore