42 research outputs found
Alertness States Classification By SOM and LVQ Neural Networks
Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable devic
Automatic detection of drowsiness in EEG records based on machine learning approaches
editorial reviewe
SĂ©paration des niveaux de vigilance, Ă partir d'un signal EEG par les cartes auto-organisatrices de Kohonen
Colloque avec actes et comité de lecture. internationale.International audiencePlusieurs études ont déjà été menées pour tenter de discriminer, à l'aide de réseaux de neurones artificiels, les différents états de vigilance d'un sujet humain. Dans ce papier, nous présentons en détail une méthode de séparation des niveaux de vigilance, à partir d'un signal EEG par les cartes auto-organisatrices de Kohonen. Nous y avons associé dès le début des médecins dont l'expertise nous a été précieuse pour le recueil des données et la mise au point de notre modèle
Discrete Wavelet Transform Coefficients for Drowsiness Detection from EEG Signals
peer reviewedThis paper proposes an effective approach to
detect drowsiness from EEG signals by using Discrete Wavelet
Transform (DWT) coefficients as features. The majority of
drowsiness detection systems extract features using FFT to
calculate the power spectral density or the DWT to calculate
entropy from EEG sub-bands. Although these techniques excel
in capturing valuable features in the frequency domain, they
omit temporal details essential to the analysis of EEG signals.
These details are integrated into coefficients indicating the
correlation between the wavelet function and the EEG signal at
different times. In our work, we perform a time-frequency
analysis of EEG signals using DWT coefficients to preserve this
temporal context. Furthermore, the study explores the influence
of time segment size on system performance. Subsequently, we
determine the most suitable technique to minimize input feature
redundancies. Our approach employs just two EEG electrodes,
C3 and C4, mirroring common setups for detecting wakefulness
and drowsiness. Four classifiers were assessed: decision tree,
random forest, multilayer perceptron, and support vector
machine. The findings reveal that DWT coefficients enhance
drowsiness detection performance, surpassing previous
methods
Supervised neuronal approaches for EEG signal classification: experimental studies
Using artificial neural networks for Electroencephalogram (EEG) signal interpretation is a very challenging tasks for several reasons. The first class of reasons refers to the nature of data. Such signals are complex and difficult to process. The second class of reasons refers to the nature of underlying knowledge. Expertise is manifold and difficult to formalize and to be made compatible with a numerical processing. In previous studies we have deeply described that expertise and explained, from theoretical and bibliographical studies, why artificial neural networks could be interesting candidates to perform such a signal interpretation. In this paper, we report recent experiments that we have made on real EEG data in a classification framework. These results are interesting with regard to the state of the art. They also indicate that further work must be done on expertise integration in our neuronal platform
Analyse et classification des états de vigilance par réseaux de neurones
Plusieurs études ont déjà été menées pour tenter de discriminer, à l'aide de réseaux de neurones artificiels, les différents états de vigilance d'un sujet humain. Dans ce rapport, nous rappelons ces études et nous présentons en détail les travaux que nous menons actuellement dans ce même domaine. Notre travail est original sur trois points. Tout d'abord nous avons mené une étude plus large et exhaustive sur les modèles neuronaux utilisés, sur leurs caractéristiques et sur leurs performances. Ensuite, nous y avons associé dès le début des médecins, dont l'expertise nous a été précieuse pour le recueil des données et la mise au point fine de nos modèles. Enfin, et surtout, notre étude a été orientée de manière à pouvoir obtenir un système léger, utilisable sans entrave par un sujet humain. Nous nous sommes en particulier attachés à limiter les besoins de calcul et de mémoire, ainsi que les accès aux données. Cette approche devrait donner lieu prochainement à la réalisation d'un système électronique portable
Recommended from our members
Pacifica: Poetry International: Revolutions in Tunisian Poetry
A collection of contemporary poetry from Tunisia, including poems in translation with their French and Arabic original texts
Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility
Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen
characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose
and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male
infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect
fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and
DNA, which may impair the sperm’s potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of
male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress
Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many
patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a
useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants
(antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the
potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective
test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing
the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis,
future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause