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Abstract1

Drowsy driving is a major cause of road accidents. Traffic accidents can be prevented by dis-2

criminating between driver states of alertness and drowsiness. This paper presents an efficient1 3

system for drowsiness detection based on EEG signals. The proposed system is efficient in4

providing consistent results regardless of the inherent characteristics of drivers. Our method5

is based on features extracted from well-defined sub-bands. These sub-bands obtained using a6

tunable Q-factor wavelet transform. The use of sub-bands solves the problem of interpersonal7

variability of EEG recordings, which is a major problem in detecting drowsiness. In addi-8

tion, the use of kernel principal component analysis reduces the size of the features extracted9

from EEG signals without degrading the accuracy. Indeed, a single differential EEG channel10

with a minimal number of carefully selected features is sufficient to provide a fast, con-11

venient, and accurate detection system. For drowsiness recognition, two different machine12

learning techniques, K-nearest neighbours and support vector machines, are proposed. The13

latter consists of a learning module for medical diagnosis based on EEG signals from a set of14

laboratory subjects. Laboratory conditions help identify characteristic and common features.15

These preparatory parameters make it possible to provide a real-time adaptive drowsiness16

diagnosis by assessing the driver’s condition every second. By customizing the system, it can17

detect drowsiness with an accuracy of approximately 94%.18
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1 Introduction20

The term vigilance is defined differently according to scientific disciplines (neurophysiol-21

ogy, psychology, or ergonomics). Etymologically, this means awakening. We attribute the22

designation of vigilance states to the different levels of the wake-sleep cycle. It can be related23

to the level of cerebral activity, and thus, it underpins all mental operations, from the simple24

detection of information to the development and expression of behavior. However, the level25

of performance increases with alertness to an optimum level beyond which performance26

drops. This makes it possible to understand that high (stress) or low vigilance (e.g., caused27

by a lack of sleep) can affect performance [1].28

The spontaneous electrical activity of the cortex is dynamic, stochastic, nonlinear, and29

nonstationary. The sleep–wake transition, which differs from subject to subject, is marked30

by sudden variations in the frequency and amplitude of the EEG signal. According to [2],31

the transition from wakefulness to sleep is manifested by the appearance of an intermediate32

stage called somnolence.33

Drowsiness has been recognized in recent years as a very important and significant factor in34

increasing the number of road accidents. According to the latest published statistics, drowsy35

driving accounts for 20% of road accidents worldwide [3]. A survey on the indicators of36

hypo-vigilance, particularly fatigue, quantified by the appearance of the drowsiness stage,37

has allowed us to present an overview of the various approaches used for the detection of this38

state. In this regard, we can classify the most popular detection approaches into three main39

categories: vehicle movements, driver behaviors, and physiological sensing.40

The first category is based on the movements of the vehicle [4], such as the detection41

of lane changes or the pressure of the driving pedal [5, 6]. These measures show a high42

potential for detecting drowsiness. Nevertheless, their reliability is affected by vehicle type,43

driving expertise, and environmental and road conditions [7]. For assisted driving, it is more44

complicated to assess these factors because the vehicle is being monitored by an automated45

system.46

The second category focuses on the behavior of the driver himself, essentially analyzing47

his yawning, closing, and blinking of eyes (PERCLOS: "PERCentage of eyelid CLOSure"),48

or the head pose, among other similar movements [4]. This process is quite effective but not49

easy to market, as drivers do not appreciate being constantly supervised by a camera [8].50

Nevertheless, there are many commercial products ranging from camera-based methods [9,51

10] to devices worn over glasses [11]. However, different flashing frequencies and amplitudes52

can affect the monitoring quality [12]. In addition, insufficient lighting and sunglasses can53

limit the performance of monitoring systems [4].54

The last category of assessing drowsiness includes systems relying on the exploitation55

of physiological characteristics, including EEG [13–15], Electrocardiogram (ECG) [16],56

and Electrooculogram (EOG) [17]. These are generally identified as objective data-driven57

quantification systems. The objective assessment of drowsiness is carried out by specialized58

laboratories capable of performing analyses such as the iterative awakening preservation test59

with data collected in real or deferred time [10, 18]. According to [19], owing to its excellent60

time resolution and sensitivity to fatigue detection, EEG provides better results than other61

physiological signals. Although effective, this technique is cumbersome, as several electrodes62

are usually required to improve accuracy and robustness. EEG signals are formed by several63

rhythms representing various mental states, such as drowsiness and vigilance. Bearing this in64

mind, a variety of studies have attempted to perform EEG-based parameter extraction using65
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different signal processing techniques in order to choose the most relevant parameters to66

accurately detect drowsiness.67

Focusing on objective data-driven quantification systems, the most interesting methods68

proposed in several papers involve the analysis of EEG signals based on Fast Fourier Frans-69

form (FFT), filtering techniques, wavelet transform, direct feature extraction, and empirical70

mode decomposition. FFT-based methods suffer from localization issues [20]. Filtering71

requires the selection of precise filtering limits. Wavelet-based techniques imply the selection72

of an appropriate mother wavelet and decomposition levels [8]. Decomposition in the empir-73

ical mode is entirely based on experiments and requires mathematical modelling. Therefore,74

there is a great need to carefully decompose and retrieve information [21]. Nevertheless, the75

Tunable Q-factor Wavelet Transform (TQWT) does not require the selection of the wavelet76

function [22]. Hence, the particular interest in TQWT, very useful for obtaining an efficient77

and sparse representation of signals.78

Several studies have reported on the automated evaluation of vigilance fluctuations based79

on the analysis of EEG signals. In this context, a signal classifier plays a very important role in80

terms of accuracy and reliability. Several classifiers have been proposed for related or similar81

scenarios. In [23], a Multi-Layer Perceptron (MLP) and a Learning Vector Quantization82

(LVQ) network was trained to classify six vigilance states from 30-s EEG epochs in infants.83

In this study, recordings of three infants were used for training and one for testing. The84

classification results are almost equivalent for both networks. The authors in [24] suggested85

a spectral analysis approach while adopting a multilayer neural network for classification.86

The aim was to explore the correlation between the spectral EEG signal and the level of87

alertness, quantified by an auditory test. In [25], a radial basis function (RBF) was used to88

classify the alertness levels of 12 subjects by exploiting fragments of their EEG signals.89

The authors used the coefficients of an autoregressive model as input parameters. In [5], the90

authors mapped wake-sleep transitions over 1.28 s EEG epochs while taking into account91

artifacts using Kohonen’s self-organizing maps.92

Perhaps considered the latest complete studies, the authors in [26] exploited three super-93

vised learning connectionist models: a multilayer feed-forward network, a linear neural94

network, and an LVQ. Note that the three approaches were used to identify the two states95

awake and drowsy using 14 EEG signal derivations from 12 subjects. It should also be96

noted that none of the adopted approaches considered the appearance of artifacts in the EEG97

signals that were expertly removed. In [27], the authors put forward a drowsiness recogni-98

tion application using attention and meditation signals from NeuroSky features; the signals99

were classified using the (KNN). The best results of all tests yielded an accuracy rate of100

95.24%. In [28], the authors adopted the KNN to detect driving fatigue and alert states using101

EEG derivation. The results in terms of sensitivity and specificity were 68.31% and 90.43%,102

respectively.103

In recent years, Deep Learning (DL) approaches have demonstrated abilities in terms104

of object identification and EEG prediction. Thus, Almogbel et al. [29] used four EEG105

derivations collected from a single subject and a Convolutional Neural Network (CNN) to106

estimate the workload based on EEG, achieving the highest accuracy of 95.3%. In [13], the107

authors proposed a new approach to predict the alertness states of individuals by analyzing108

EEG signals using DL architectures. In this study, two types of networks, 1D-UNet and 1D-109

UNet-Long Short-Term Memory (1D-UNet-LSTM), were employed. The per-class average110

precision and recall were 86% for 1D-UNet and 85% for 1D-UNet-LSTM.111

Many researchers have utilized Support Vector Machines (SVMs) to classify and detect112

drowsiness phases from EEG signals. In [18], the authors extracted four frequency features113

from the EEG signal and then used an SVM classifier for fatigue detection, which gave an114
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excellent classification rate. In [30], the authors used nine features extracted from 11 EEG115

channels and an SVM-based classifier to distinguish drowsiness from wakefulness. The accu-116

racy achieved by this system was approximately 95%. In [31], the authors opted for an SVM117

classifier to distinguish between vigilance states. The authors’ results highlighted the consid-118

erable ability of portable EEG devices to discriminate among various cognitive states under119

various conditions. Karuppusamy and Kang [32] used 14 EEG derivations collected from120

OpenBCI headsets. The authors manually labelled the EEG sequences based on the eyeblink121

images. The maximum performance achieved using this approach is approximately 81%.122

The authors of [33] used a wearable headband (MUSE) for real-time drowsiness detection123

in drivers. Based on the EEG spectral characteristics, the authors achieved a performance of124

74% in cross-validating subjects with SVM. The authors also detected drowsiness using blink125

duration parameters. The efficiency of the blink parameters was found to be less than that126

of the spectral analysis. In [34], the authors put forward a system for detecting drowsiness127

based on EEG signals using a linear SVM for classification. This solution made it possi-128

ble to obtain an average precision of 99.1%. The proposed system was very complex and129

contained several blocks, which made it very hard to be applied in real time. In addition,130

the authors extracted 32 features and utilized two EEG channels. In [35], the authors used131

a combination of the SVM and RBF to identify drowsiness based on EEG power spectral132

bands. Nissimagoudar and Nandi [36] described an EEG detection system using an SVM133

classifier. They detailed an extended driver assistant designed to increase performance and134

driving safety. A classification result was obtained, ranging from 74 to 89%.135

All these studies used various classification methods to analyze EEG signals to detect136

drowsiness phases. Among these, the SVM [37–39] appeared to be the most powerful137

classification technique. The SVM was developed as a high-performance binary classifier138

for drowsiness. In addition, this algorithm would allow the implementation of lower Vap-139

nik–Chervonenkis dimensional architectures. High-dimensional data could then be classified140

using a lower number of optimization parameters. Thus, these algorithms could solve con-141

vex optimization problems, which would result in a globally optimal solution. Indeed, this142

differed from artificial neural networks, which would frequently converge to local minima143

rather than global minima.144

To improve classification performance, it is essential to carefully select the most useful145

features from a wide range of dimensions. In this sense, several approaches have been sug-146

gested, such as Principal Component Analysis (PCA), Kernel PCA (KPCA), and Independent147

Component Analysis (ICA). For instance, in [40], the authors compared the PCA, KPCA, and148

ICA performances for feature extraction as part of the SVM classification. The normalized149

mean square error was used to compare the performance of the three methods. The result of150

dimension reduction using KPCA was the most promising, with a strong nonlinear process-151

ing capability. Similarly, in [41], the authors evaluated two approaches: transfer component152

analysis and KPCA. They also concluded that KPCA provided the best performance. This can153

be explained by the fact that EEG data, which always contain a lot of noise, will be denoised154

by KPCA when transferring common components from the source to the target domain. In155

[42], the authors combined KPCA and SVM (KPCA-SVM) to detect driving mental fatigue.156

Their results, with 81.64% accuracy, demonstrated that the KPCA-SVM algorithm increased157

the generalization capability of the classifier and enhanced the accuracy of recognition of158

mental fatigue states compared to the PCA-SVM and SVM without feature quality reduction.159

Accordingly, we have opted for using the KPCA method combined with the SVM to perform160

drowsiness classification by looking for a minimum feature set.161

Thus and taking into account all that we have just exposed in the previous part„ we162

propose in the following a drowsiness recognition method based on a combination of TQWT163
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for EEG-parameter extraction, the KPCA method for feature reduction, and two different164

machine learning techniques to achieve effective recognition. The main challenge of this165

work is to develop a new architecture that can be used as a solution for real-time drowsiness166

detection with the best quality/complexity ratio. The proposed solution must be adapted for167

an embedded device that can be integrated in the passenger compartment of a car. Thus, the168

contributions of this study are as follows:169

• The creation of a database dedicated to drowsiness analysis and classification is based on170

EEG signals labelled by an expert doctor.171

• The extraction of EEG sub-bands using the TQWT method, where the most appropriate172

decomposition levels and the best sub-bands are used to eliminate interpersonal problems.173

• The identification and selection of the best characteristics for drowsiness recognition using174

the KPCA method on a minimum feature set.175

• The comparative use of two machine learning techniques, SVM and KNN, for drowsiness176

recognition, where validation is carried out by adopting two strategies: inter-subject and177

intra-subject. This choice has been motivated by the results reported in the literature on178

the one hand and by their lower algorithmic complexity on the other hand.179

• The minimization of the number of electrodes by identifying the best ones (among the 19180

available) to provide the most relevant data reflecting the state of drowsiness.181

The remainder of this paper is organized as follows: Sect. 2, while having EEG as182

the source parameter to effectively predict the vigilance states of a subject, will describe183

the pre-processing phases applicable to EEG signals and the architectures of the proposed184

machine learning models which will improve the recognition performance. Section 3 presents185

the parameters and methods used to validate the proposed system. Finally, we present the186

experimental setup and a comparative evaluation of the results obtained using the suggested187

approach.188

2 Materials andMethods189

2.1 Materials190

Existing databases, built with EEG signals collected at home or in controlled environments,191

focus on the waking stage and various sleep stages [43]. Hypo vigilance, however, is not a192

fully-fledged state, but a transition between the two stages. This transition, the intermediate193

point between wakefulness and sleep, is not a subject of interest for experts in the identification194

of stages. Therefore, it is necessary to build our own database assisted by experts.195

In this study, we use EEG database collected from healthy students in our team [13]. These196

EEG signals are measured at the Vigilance and Sleep Center of the Faculty of Medicine in197

Monastir with adopting an experimental protocol approved by the Ethics Committee of our198

faculty. All participants in this database collection signed an informed consent form before199

starting the experiment. The consent document included a brief description of this research200

involving human subjects. This database is now available for the moment on request from201

the corresponding author after upon request. Concerning the anonymisation process of the202

database we have adopted a common approach of simply removing data fields that contain203

personal information (name, first name, date of birth, social security number,) which are204

replaced by a numerical identifier.205

This database includes 45 h of data collected from eight subjects between the ages of 21206

and 25, which are implicated in drowsiness. Healthy students, with no history of alcoholism207
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or drug use, get up before 10:00 a.m. and take about four hours to complete the task. Each208

subject’s record is represented by 19 EEG derivations, which are shown in Fig. 1. This last one209

represents original trace of a patient belonging to our database recorded during a transition210

between wakefulness and sleep.211

The common electrodes in all recordings are four EEG channels, two central zones (C3212

and C4), and two occipital zones (O1 and O2), each of which is acquired at 500 samples213

per second. The positions of the electrodes are shown in Fig. 2. The EEG signals are filtered214

using a 2nd order band-pass Butterworth filter between 0.5 and 50 Hz.215

Fig. 1 Original 10-s record of a patient taken during the awake-sleep transition phase

Fig. 2 Distribution of electrodes. All recordings used four EEG channels, two central zones (C3 and C4 in
yellow) and two occipital zones (O1 and O2 in light blue)
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Fig. 3 EEG signal tracing and labels based on expert assistance for three mental states: a alertness and b drowsi-
ness

The labelling of the different vigilance levels is carried out manually by an expert in216

EEG and polysomnography. The expert classified these recordings at intervals of 10 s and217

30 s. These intervals are sufficiently large to guarantee precise drowsiness state detection218

sufficiently early. For each subject, the expert adopts two labels corresponding to two states219

of vigilance: alertness and drowsiness (Fig. 3).220

To make the EEG signal efficiently usable in the extraction and classification phase without221

causing the inter-individual variation problem, a time segmentation phase followed by a222

normalization phase is required. Thus, time segmentation of the input data is performed at223

intervals of 10-s. Indeed, increasing the time segment improves the accuracy of the proposed224

system. For this reason, the 10-s window elapses one second for each treatment, and the system225

should therefore give a result every second. Thereafter, the EEG signals are normalized by226

converting the values to z-scores. Z scores are expressed in terms of standard deviations from227

their mean. Thus, the scores of the different distributions can be directly compared [44].228

All calculations in this work have been run on an Intel (R) Core ™i3-4005U, 1.70 GHz229

CPU with 8 GB of RAM. The experiments have used MATLAB version R2015a.230

2.2 Drowsiness Recognition Using EEG Analysis231

As mentioned in the introduction, one of the most important approaches to estimating vigi-232

lance is the use of physiological measurements. EEG is a precious and cost-effective signal233

used to assess the electrical activity of the brain. EEG has a non-invasive appearance and is234

dynamic, stochastic, non-linear, and non-stationary, with a small amplitude. Generally, EEG235

signals are widely regarded as reliable measures of drowsiness, fatigue, and performance236

assessment [2].237

Characteristics based on Power Spectral Density (PSD) are the most widely used for EEG-238

based drowsiness surveys [8]. The decrease in arousal is characterized by slowing down and239

desynchronization of cortical electrical activity. EEG bands can be represented as low-and240

high-frequency activities. Figure 4 illustrates five traditional EEG frequency bands: delta δ241

(0.1–4 Hz), theta θ (4–8 Hz), alpha α (8–13 Hz), beta β (13–30 Hz), and gamma γ (30–50 Hz).242

The frequency band distribution changes over time, and the occurrence of frequency bands243

can be used as a feature related to the drowsiness state.244

The low-frequency bands, in particular the α band, show increased power during the245

drowsy phase compared to the alert phase. Drowsiness leads to increased α and θ activi-246

ties with eyes open, while α decreases and θ increases with eyes closed [45]. Indeed, α is247

predominant when the person is alert. When they close their eyes, α is gradually replaced248
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Fig. 4 Representations of most popular EEG frequency bands. Five traditional EEG frequency bands, including
Delta δ (0.1–4 Hz), Theta θ (4–8 Hz), Alpha α (8–13 Hz), Beta β (13–30 Hz), and Gamma γ (30–50 Hz)

by a θ activity with increasing drowsiness. The α activity, which decreases in the occipi-249

tal regions, sometimes increases in the central and frontal regions with fatigue [46]. The θ250

activity increases mainly in the frontal and central regions [46].251

The high-frequency EEG bands (β and γ), in particular the beta band, show a reduction252

in the power of the band throughout drowsiness [46]. In terms of brain regions, the frontal,253

parietal, and occipital regions are suggestive; in particular, the α activity of the occipital region254

and the β of the frontal region are two potential indicators. Thus, finding informational brain255

regions with particular frequency bands will reduce the number of electrodes needed to256

develop an effective EEG-based drowsiness detection and warning system.257

2.3 ProposedMethod and Process of Experiment258

The approach is proposed to differentiate between alertness and drowsiness, so the detec-259

tion of hypo-vigilance consists of two main steps: the extraction of characteristics from the260

EEG signals and their classification. Figure 5 shows the operations performed, from EEG261

sampling to hypo vigilance detection. Initially, the segments marking the awake and drowsy262

phases are taken from the dataset. Then, the data are segmented into 10-s elapsed windows,263

produced every second. Subsequently, the data are normalized using Z-score. The result of264

the normalization of each segment is decomposed into sub-bands using TQWT. From these265

sub-bands, the alpha and theta bands are used to extract the features and KPCA to identify266

highly discriminating features. Finally, these features are fed to the SVM to determine their267

classes.268

2.3.1 Extraction and Feature Selection269

Tunable Q-Factor Wavelet Transform The feature extraction process requires the applica-270

tion of a denoising algorithm (to remove artifacts) and dimensionality reduction (to speed up271
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Fig. 5 Operations performed from EEG sampling to hypo vigilance detection: Data acquisition (production of
10-s windows and Z-score normalization), feature extraction (decomposition in sub-bands and identification
of highly discriminating features using KPCA) and classification using SVM

Fig. 6 TQWT based decomposition level of input signal. The input values are broken down into N + 1 low-pass
and high-pass sub-bands, where N is the number of stages of the two banks of channel filters

the identification process). Therefore, instead of using a Discrete Wavelet Transform (DWT)272

to capture both frequency and location in time, we use a TQWT. Indeed, the TQWT allows273

adjustable parameters and a very fast response time [22]. Additionally, the TQWT is proposed274

to provide an efficient and distributed representation of the oscillatory signals.275

The TQWT is characterized by three parameters: Q-factor, redundancy r, and the number276

of levels of decomposition J. The parameter Q defines the number of oscillations of the277

wavelet, and r defines the frequency overlap. The input values are broken down into N + 1278

low-pass and high-pass sub-bands, where N is the number of stages of the two banks of the279

channel filters. For more details on the TQWT, the authors explained in [47] the choice of the280

parameters and the influence of each parameter as regards the performance of the adopted281

solution. According to the trade-off between processing speed and precision, the resulting282

chosen parameters are Q = 1, r = 3, and j = 7.283

The TQWT consists of a sequence of dual-channel filter banks, and the low-pass output284

of each filter bank is used as the input for successive filter banks. Each output signal is a285

wavelet-transform sub-band. The decomposition of the signal into N + 1 sub-bands is shown286

in Fig. 6.287

In our case, we process the sub-bands expressing the α and θ activities. The sub-bands288

expressing the α and θ activities are sub-bands 5 and 6. We are interested in temporal and289

frequency features that represent both activities. Three features are extracted based on the290

frequency domain and nine features are extracted from the temporal domain for distinguishing291

‘Alert’ and ‘Drowsy’ EEG epochs. These features are illustrated in Fig. 7.292

Kernel Principal Component Analysis As a pre-processing method, KPCA proves helpful293

for classification [48]. As a feature extractor, the features pre-treated by KPCA have smaller294
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Fig. 7 Frequency and time domain features extracted from EEG signals

dimensions, which improves the efficiency of classification. KPCA is an extension of PCA.295

It is a technique that generalizes linear PCA for nonlinear cases using the kernel method.296

Given the high size and non-linearity of the EEG signal, the kernel method is a powerful tool297

for the classification of this type of signal.298

KPCA performs a nonlinear form of PCA with integral operator kernel functions F(x)299

[48], considering that the data xi , with i = 1,2…N and xi ∈ RN are represented in the feature300

space K by:301

� : RN → K302

xi → �(xi ) (1)303304

Let us first assume that our projected features have zero-average as follows:305

1

N

N∑

i=1

�(xi ) = 0 (2)306307

The covariance of the projected new features is calculated by:308

C = 1

N

N∑

i=1

�(xi )�(xi )
T (3)309310

The eigenvectors and eigenvalues of this covariance matrix are:311

CVk = λk Vk (4)312313

with k = 1.2…D and D are the dimensions of the data mapped into the K-space.314

Using (3) and (4), we have:315

CVk = 1

N

N∑

i=1

�(xi )�(xi )
T Vk = λk Vk (5)316317

This can be reworded as follows:318

Vk = 1

N

N∑

i=1

ai�(xi ) (6)319320
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If we replace Vk in Eq. 5 with Eq. 6, we obtain:321

CVk = 1

N

N∑

i=1

�(xi )�(xi )
T

N∑

j=1

a j�
(
x j

) = λk

N∑

i=1

ai�(xi ) (7)322323

The kernel function is set:324

K (xi , x j ) = �(xi )
T �

(
x j

)
(8)325326

If we multiply both sides of Eq. 7 by �(xi )
T , we obtain:327

1

N

N∑

i=1

K
(
xi , x j

) N∑

j=1

ai K
(
xi , x j

) = λk

N∑

i=1

ai K
(
xi , x j

)
(9)328329

We apply the matrix notation as follows:330

K 2 Ak = λk N K Ak (10)331332

with Ki, j = K
(
xi , x j

)
.333

The resulting kernel principal components are given by:334

yk(x) = �(x)T Vk =
N∑

i=1

ai K (x, xi ) (11)335336

It is essential to have zero mean in the kernel space. If the data in the kernel space do337

not have a zero mean, we use the Gram K̃ matrix to replace our kernel matrix K. The Gram338

matrix K̃ is given by:339

K̃ = K − 1N K − K 1N + 1N K 1N (12)340341

where 1N is an N × N matrix and all elements are equal to 1/N.342

In our case, the Gaussian function was selected as the kernel function for the KPCA343

algorithm. This function is defined as follows:344

K Gaussian
σ (x, y) = exp

( ||x − y||2
σ 2

)
(13)345346

where σ is the width of the Gaussian kernel.347

Classification Using Support VectorMachine SVM, which is a machine learning algorithm,348

is a powerful tool for brain-computer interface (BCI) applications for real-time EEG classifi-349

cation [30]. It aims to search the hyperplane not only to obtain a better classification based on350

support vectors, but also to maximize the geometric margin in the classification (Fig. 8). This351

approach maximizes the margin, which is the closest distance between two corresponding352

samples in each separate class (the alert and drowsy classes). For margin maximization, the353

mathematical model of the SVM is presented in Eq. 14:354

min
1

2
||w||2 + C

n∑

i=1

ξi355

s.t. yi (w, xi ) + b ≥ 1 − ξi , ξi ≥ 0, i = 1, 2, . . . .n (14)356357
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Fig. 8 SVM classifier

where xi is a set of given training vectors with xi ∈ Rn , yi is the corresponding label of xi ,358

w is the normal weight vector to the hyperplane, b is the bias, ξi is a slack variable, and C is359

a penalty factor.360

Using the SVM, the system can match the predictor data to the hyperplane, and kernel361

functions can successfully perform both linear and nonlinear classification [49]. In this con-362

text, the RBF is the most popular of all SVM kernels. This kernel is mathematically defined363

by Eq. 15:364

K (xi , x) = exp(−γ ||xi − x ||2), γ > 0 (15)365366

where K (xi , x) is the kernel function, which is based on the internal product of the two367

variants xi and x, and γ defines the scope of the impact of a single learning example.368

The RBF kernel is tuned for two parameters: the penalty factor C, which balances the369

relative importance of minimizing the learning error and maximizing the class margins, and370

the γ parameter, which defines the degree of similarity between points [50].371

Overview of Proposed TQWT-KPCA Model Our suggested TQWT-KPCA procedure and372

associated parameters, shown in Fig. 9, can be summarized as follows:373

Step 1. Data pre-processing (filtering, normalization and segmentation).374

Step 2. Division of EEG segment into sub-bands using TQWT.375

Step 3. Features extraction.376

Step 3. Perform KPCA for features selection.377

Step 4. Use SVM to predict "alert or drowsy" driver state.378

3 Validation and Testing379

Different metrics are applied in this study to evaluate the performance of the proposed380

approach. For this purpose, three metrics are used: accuracy, specificity, and sensitivity.381
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Fig. 9 Procedure of TQWT-KPCA model

Fig. 10 Confusion matrix. Correlation between actual and predicted values in the form of (TP), (FP), (TN) and
(FN) results

These metrics are computed using a tenfold cross-validation strategy [51]. This strategy is382

based on the information obtained from the confusion matrix illustrated in Fig. 10, where383

four results are provided.384

True Positive (TP): prediction of drowsiness when the actual state is drowsiness.385

False Positive (FP): prediction of drowsiness when the actual state is alertness.386

True Negative (TN): prediction of alertness when the actual state is alertness.387

False Negative (FN): prediction of alertness when the actual state is drowsiness.388

The performance measurement parameters (precision, sensitivity, and specificity) were389

computed as follows:390

Accuracy = T P + T N

T P + F P + T N + F N
(16)391392

Speci f ici t y = T N

T N + F P
(17)393394

Sensi tivi t y = T P

T P + F N
(18)395396

The training and test datasets are divided by subject so that three randomly selected397

subjects are used for training and testing, and the remaining five subjects are only utilized398

for testing. Specifically, the samples of three subjects are divided into 70% for training and399
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Fig. 11 Organization of data for classifier training and testing

Fig. 12 Sub-bands using TQWT decomposition

30% for testing, and the samples of the remaining subjects are used for testing, as shown in400

Fig. 11.401

4 Results and Discussion402

4.1 Results403

4.1.1 Inter-subject Results404

Extraction Sub-bands Using TQWT The sub-bands are obtained by transforming the EEG405

signals into a different domain, as mentioned in Sect. 2.3.1.1. Among the existing methods of406

transformation of the time–frequency domain, the TQWT is applied to obtain the sub-bands.407

It can cover the frequency ranges of the required sub-bands and recover the time-domain408

signal with very little waste. Figure 12 shows an example of EEG signal decomposition at409

the J level using the TQWT.410

Regarding the choice of sub-bands from which the different characteristics will be411

extracted, we explore the variation in the mean frequency of the EEG during alert and drowsy412

states. The mean frequency of the EEG signals provides an indicator of the general slowing413

down of brain activity. Table 1 shows the average frequency of each band for all the patients.414
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Table 1 Mean frequency of EEG in different spectral bands (sub-bands) for states of alert and drowsiness

State Delta
(1–4 Hz)

Theta
(4–8 Hz)

Alpha
(8–13 Hz)

Beta (13–30 Hz) Gamma
(30–50 Hz)

Alert 2.29 5.47 9.98 23.68 38.22

Drowsy 2.27 6.03 9.65 23.51 38.15

Difference 0.02 − 0.56 0.33 0.17 0.07

Difference % 1% − 10% 3% 1% 0%

Fig. 13 Scalp topography for each spectral band (delta, theta, alpha, beta)

Furthermore, the mean frequency of the alert state is almost equal to that of the drowsy state,415

except for the theta (difference: -0.56 Hz) and alpha (difference: 0.33 Hz) bands.416

Our approach consists in splitting the EEG signal into five sub-bands using TQWT. Thus,417

we obtain 95 sub-bands (5 sub-bands × 19 electrodes) for each segment of 10 s. For each418

sub-band, we calculate 21 features, so that we have as a general result for the entire segment419

95 * 21 = 1995 features.420

Topographical analysis is required to locate the most appropriate electrodes that reflect421

the best variation corresponding to the wake-sleep transition. The scalp topographies indicate422

that when the spectral band or brain region is changed, the amplitude also changes. Figure 13423

depicts the scalp topographies for the different EEG spectral bands for all recordings with424

19 electrodes. The scalp topographies represent the mean power band used to show brain425

activity during the wake-sleep transition. The amplitude is calculated for every EEG channel426

and the frequency band. Furthermore, an increase in theta and alpha power amplitudes in the427

central and occipital regions is observed during drowsiness compared to vigilance. However,428

in both the delta and beta bands, there are no significant differences in amplitude variations.429

Furthermore, an increase in the theta and alpha power amplitudes in the central and occipital430

regions is noticed during drowsiness compared to vigilance. Utilizing these features, we can431

conclude that the useful information of our system is mainly focused on the central and432

occipital regions. Moreover, we note that the variations during drowsiness are located mainly433

in the central and occipital regions. Based on these interpretations, we decide to work only434

on the alpha and theta sub-bands using the bipolar channel C3-O1.435
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Fig. 14 Relation between classification accuracy and number of features for KPCA-KNN and PCA-KNN
algorithms. The maximum accuracy of 82.39% for the KPCA-KNN obtained using 10 features

Reduction Features Using PCA, KPCA and the KNN Classifier We test the KNN algorithm436

for the advanced validation of the proposed classifier. We utilize the same testing feature set437

as the SVM.438

The KNN is a memory-based, non-parametric classification method that does not require439

a model inclusion in data and uses observations from the training set to identify the most440

similar properties. The only parameter in this algorithm is K, which is the number of nearest441

neighbour’s to be considered. Here, K = 3 is chosen. In addition, the Euclidean distance442

function is employed using an "inverse squared” distance weight [27]. The results of the test443

sessions are shown in Fig. 14. By varying the number of features, we obtain a maximum444

accuracy of 82.39% using 10 features.445

Reduction Features Using PCA, KPCA and SVM Classifier Input features are fundamental446

to the classification efficiency. After determining the features to be used as an input vector,447

we proceed to the selection of a classifier capable of improving the ability to identify the448

transitions between drowsy and alert states from EEG signals.449

In this study, RBF-SVM is generated utilizing various values of C and γ parameters.450

These parameters are tested in the range [0.1–10] and selected because they offer the highest451

accuracy. The best results were obtained by setting C to 1.0 and γ to 0.4 ((best accuracy is452

89% in Fig. 15). To differentiate between alertness and drowsiness states, after extracting453

the parameters from our EEG signal, the KPCA-SVM is applied. Classification accuracy is454

observed based on the number of parameters extracted using KPCA and PCA. The average455

classification accuracy is shown in Fig. 16.456

Figure 16 illustrates the extent to which a change in the selection of the number of features457

can affect the classification accuracy. The accuracy varies with the number of features. When458

the number of features is higher than 10, the accuracy of the classification is greater than459

84%. The maximal classification accuracy, 89%, is achieved when the number of element460

dimensions is 12. In addition, the performance of the KPCA-SVM significantly exceeds that461

of the PCA-SVM.462
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Fig. 15 Accuracy variation for different values of C and γ

Fig. 16 Relation between classification accuracy and number of features for KPCA-SVM and PCA-SVM
algorithms. The maximum accuracy of 89% is obtained with KPCA-SVM using 12 features

The maximum accuracy obtained by varying the number of features using the SVM clas-463

sifier is 89%. On the other hand, the maximal accuracy obtained with the same methodology464

using the KNN classifier is 82.39%. Based on these two results, it is found that the SVM465

classifier is preferable to the KNN classifier.466

Receiver-Operating Characteristics Using KPCA KPCA is used to determine the minimum467

number of features that achieved a good accuracy. Figure 17 summarizes the receiver oper-468

ating characteristic (ROC) results for different numbers of features. Twelve is the minimum469

number of features that provide the best result for differentiation between the two stages.470

It provides an accuracy rate of 89.37% for drowsiness detection and 88.07% for vigilance471

detection.472

The experimental results show that, with our database, for efficient classification, properly473

selected features are necessary. The graphs in Fig. 18 show the efficiency of the KPCA-474

SVM algorithm in terms of sensitivity, specificity, and classification accuracy with different475
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Fig. 17 Average result of ROC parameters for different numbers of features

Fig. 18 Performance evaluation according to number of features selected for each person: a sensitivity, b speci-
ficity and c accuracy

numbers of principal components for each patient in the database used in the test. These476

graphs are obtained using KPCA with an RBF-SVM classifier. From the results given in477

Fig. 18, it is clear that the proposed algorithm works effectively for all the patients tested. We478

have obtained the best rates in the measures used to evaluate the performance of the proposed479

work. For most of the patients, we obtain a maximum rate in terms of accuracy, specificity480

and sensitivity, when the number of principal components extracted by KPCA is around 12.481
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Once the number of extracted principal components is less than 12, the performance of the482

classifier for all patients starts to decrease.483

4.1.2 Intra-subject Results484

To ensure the effectiveness of our system, we also apply our system per person, such that485

for each subject, we take 70% of the recording for training and 30% for testing. The average486

result for all the subjects is approximately 94%.487

4.2 Discussion488

The intra- and inter-subject variability of EEG has hampered the development and application489

of drowsiness detection systems. The choice of features is always the most important step in490

the detection of decreased alertness. Adding the issue of interpersonal variability and driver491

comfort, this step becomes a challenge. The TQWT is used to divide the signal in sub-bands.492

Then the choice of features allows the interpersonal variability problem to be overcome493

without compromising the accuracy of 85%. The use of single-channel EEG makes the494

system convenient for drivers and is more suitable for the development of real-time systems.495

Furthermore, by removing unnecessary and redundant features, the efficiency and generality496

of the system’s classification is enhanced, which explains the shift from the accuracy of497

approximately 85% using all features (21 features) to 89% using only 12 features. Utilizing498

the KPCA algorithm, the accuracy of the classification is further increased to approximately499

89%, and the system becomes faster by reducing the number of features from 21 to 12.500

This study can be used as a step in the development of a drowsiness monitoring device501

based on EEG signals. Several studies have pointed to the possibility of detecting driver502

drowsiness from EEG signals. In Table 2, we compare our approach with existing methods2503
that use the process results for the combined subjects. In [8], the authors used 19 features504

using DWT and FFT to estimate an individual’s drowsiness with an accuracy of 87%. The505

authors of [52] presented a system based on features obtained from the alpha band and an506

MLP classifier, and an accuracy rate of 88% was achieved.507

Since most studies have not taken into account interpersonal problems and have not tested508

their system per person, we add another table (Table 3), which compares the results obtained509

by applying our system per person with the results using the same strategy. However, the510

authors in [13] used the same database as ours, and the result obtained was approximately 10%511

lower than our classification accuracy. In [55], the authors proposed drowsiness detection512

using eight features extracted from EEG signals and an SVM for classification, and an513

accuracy rate of 83% was obtained.514

This large difference in terms of performance is mainly due to:515

• The use of a 1 s sliding window in the EEG signal. This technique allows the signal to be516

analyzed by fractions assumed to be stationary. This approach is rather original compared517

to other studies mentioned in Tables 2 and 3, which used EEG portions of fixed widths518

ranging between 10 and 30 s. Thus, these sliding windows make it possible to detect rapid519

transitions in brain activity, in our case drowsiness.520

• The large number of EEG signal derivations used in most bibliographic studies. Indeed,521

the authors in these articles used a rather high number of inputs. As we have already noted522

in our article we have used only one derivation which is the (C3-O1) with those two alpha523

and theta bands that best characterize the drowsiness phase. (Sect. 4.1.1.1).524
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• The TQWT extraction method coupled with the KPCA which allowed reducing the feature525

number while adapting with the transitory nature of the EEG signal.526

5 Conclusion527

Drowsiness precedes sleep or the need to sleep. Drowsiness becomes dangerous if a certain528

level of concentration is required, for example when driving motor vehicles. In this work,529

we put forward a drowsiness detection system based on features extracted from a unique530

EEG channel. Our system is based on the TQWT for EEG signal decomposition, KPCA531

for feature selection, and SVM for distinguishing between alertness and drowsiness. The532

suggested approach can detect drowsiness with accuracy of approximately 89% and 94% for533

inter- and intra-subject systems, respectively.534

The advantage of our method, in addition to a good rate of detection of hypo vigilance535

states, is that it can solve the problem of interpersonal variability. Furthermore, our database,536

specially built for the study of hypo vigilance, is of great help in analyzing the problem537

properly. Finally, the proposed hypo vigilance detection algorithm, besides to its fast response,538

robustness and precision, can be applied in real time.539

In the future, we plan to integrate other physiological signals, like the ECG and the EMG,540

with EEG signals to improve the robustness of the system. Moreover, hardware integration541

on embedded devices (FPGA and/or microprocessors) of the proposed approach will be the542

subject of future work. For example, wireless portable EEG headsets can be used for the543

acquisition of a limited number of physiological signals in the car passenger compartment544

(e.g. the EPOC + headset from emotiv1 or the maindwave from neurosky 22).545
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