687 research outputs found

    Asymptotes of multiplicity and transverse momentum correlation coefficients at large string density

    No full text
    The multiple hadron production in high energy collisions is studied in the model with string fusion on transverse lattice. In the framework of the model the asymptotes of the correlation coefficients between the mean transverse momentum and the multiplicity and between the mean transverse momenta for realistic case of non-uniform string distribution in transverse plane were calculated. The results were obtained by two different methods using the alternative definitions of the correlation coefficients. It is shown that the asymptotes of the correlation coefficients obtained by these two methods coincide in the leading approximation. The examples with non-uniform string distribution in transverse plane were considered. Strong dependence of the correlation coefficient between the transverse momentum and a multiplicity on non-uniformity in the distribution of the strings was found. In particular it is shown that there are distributions of strings for which this coefficient becomes negative. For the correlation coefficient between transverse momenta its dependence on the scaled variance of the number of particles produced from a single string, which disappears in the case of a homogeneous string distribution, is analyzed. The analytical asymptote for the correlation coefficient between transverse momenta obtained at large string density are compared with the results of the MC numerical calculations of this coefficient

    Study of strongly intense quantities and robust variances in multi-particle production at LHC energies

    No full text
    The project is aimed to study the strongly intense quantities and robust variances in processes of multi-particle production in pp and AA interactions at LHC energies. It implies Monte Carlo and analytic modeling of these quantities in the framework of a quark-gluon string model. The string fusion effects are also supposed to be taken into account by implementing of a lattice (grid) in the impact parameter plane. The connection of the considered variables with short- and long-range rapidity correlation functions is planned to be established. The influence on the results of the procedure of centrality class fixation will be also studied by taking into account the restrictions on the variation of the total number of strings or the multiplicity in some additional 'analyzing' rapidity window. As a next step, to make the results directly comparable with the ALICE data, the MC model simulations are supposed to be fulfilled with realistic distribution of strings for given event in the transverse plane and the fixation of centrality classes by a signal from the ALICE Vzero or ZDC detectors

    Using a Strongly Intense Observable to Study the Formation of Quark-Gluon String Clusters in pp Collisions at LHC Energies

    No full text
    Within the framework of the model with quark-gluon strings (color flux tubes) as sources, the properties of the strongly intense variable Σ, which characterizes the correlations between the number of particles in two observation windows separated in rapidity, are studied. It is shown that, in pp collisions at LHC energies, string fusion effects leading to the formation of string clusters have a significant effect on the behavior of this observable. The experimentally observed changes in this variable with the initial energy and centrality of the pp collision can only be explained by taking into account the formation of string clusters consisting of an increasing number of merged strings. It is demonstrated that the study of the behavior of the Σ observable as a function of the rapidity distance between the centers of the observation windows and the width of these windows with variable experimental conditions using different energies and centralities of pp-collisions makes it possible to extract the parameters of string clusters from the experimental data

    Long-Range Correlations between Observables in a Model with Translational Invariance in Rapidity

    No full text
    We estimate the impact of the fixation of the total number of sources (quark–gluon strings) on the long-range rapidity correlations between different observables. In our approach this condition models the fixation of the collision centrality class, what is the usual practice in modern collider experiments, like Relativistic Heavy Ion Collider (RHIC), Large Hadron Collider (LHC) and so on. The estimates are obtained under the assumption of the translational invariance in rapidity, which is usually assumed in mid-rapidity region at high energies. Based on these assumptions, we are developing a technique for the analytical calculation of various average values of extensive and intense variables at high string densities on the transverse lattice, taking into account the effects of string fusion, leading to the formation of string clusters. Using this technique we calculate the asymptotes of the correlations coefficients both between the multiplicities and between the multiplicity and the event-mean transverse momentum of particles in two separated rapidity intervals. As a result, we found that fixing the total number of strings has a significant effect on the behavior of both types of correlations, especially in the case of a uniform distribution of strings in the transverse plane

    Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at √ s = 5.02 and 13 TeV

    No full text
    The pseudorapidity density of charged particles with minimum transverse momentum (pT) thresholds of 0.15, 0.5, 1, and 2 GeV/c is measured in pp collisions at the center of mass energies of √s=5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity (η) within 0.8pT larger than the corresponding threshold. In addition, measurements without pT-thresholds are performed for inelastic and nonsingle-diffractive events as well as for inelastic events with at least one charged particle having |η|2GeV/c), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at √s=13TeV.

    Measurement of inclusive J/ψ\psi pair production cross section in pp collisions at s=13\sqrt{s} = 13 TeV

    No full text
    International audienceThe production cross section of inclusive J/ψ\psi pairs in pp collisions at a centre-of-mass energy s=13\sqrt{s} = 13 TeV is measured with ALICE. The measurement is performed for J/ψ\psi in the rapidity interval 2.502.5 0. The production cross section of inclusive J/ψ\psi pairs is reported to be 10.3±2.3(stat.)±1.3(syst.)10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)} nb in this kinematic interval. The contribution from non-prompt J/ψ\psi (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p−-Pb collisions

    No full text
    International audienceMeasurements of the production of electrons from heavy-flavour hadron decays in pp collisions at s=13\sqrt{s} = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (pTp_{\rm T}) of 0.2 GeV/c/c and up to pT=35p_{\rm T} = 35 GeV/c/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p−-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the pTp_{\rm T} range 0.5<pT<260.5 < p_{\rm T} < 26 GeV/c/c at sNN=8.16\sqrt{s_{\rm NN}} = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p−-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong pTp_{\rm T} dependence is observed in pp collisions, where the yield of high-pTp_{\rm T} electrons increases faster as a function of multiplicity than the one of low-pTp_{\rm T} electrons. The measurement in p−-Pb collisions shows no pTp_{\rm T} dependence within uncertainties. The self-normalised yields in pp and p−-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    International audienceThe Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=\sqrt{s_{\mathrm{NN}}}= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2v_{2}) and triangular (v3v_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Normr_{3}^{\rm Norm} is found to be larger than zero and to have a magnitude similar to r2Normr_{2}^{\rm Norm}, thus pointing to a large background contribution for these measurements. Furthermore, r2Normr_{2}^{\rm Norm} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMWf_{\rm CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMWf_{\rm CMW}, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level

    Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at s \sqrt{s} , sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    Jet fragmentation transverse momentum (jT_{T}) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT_{T} algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT_{T} values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT_{T} distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT_{T} region, while they underestimate the lower jT_{T} region. The jT_{T} distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT_{T} values (called the “wide component”), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT_{T} values (called the “narrow component”), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation

    Charged-particle production as a function of the relative transverse activity classifier in pp, p−-Pb, and Pb−-Pb collisions at the LHC

    No full text
    International audienceMeasurements of charged-particle production in pp, p−-Pb, and Pb−-Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (pTtrigp_{\mathrm{T}}^{\rm trig}) in the range 8<pTtrig<158<p_{\mathrm{T}}^{\rm trig}<15 GeV/c/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NchT/⟹NchT⟩R_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle, is used to group events according to their UE activity, where NchTN_{\mathrm{ch}}^{\mathrm{T}} is the charged-particle multiplicity per event in the transverse region and ⟹NchT⟩\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle is the mean value over the whole analysed sample. The energy dependence of the RTR_{\mathrm{T}} distributions in pp collisions at s=2.76\sqrt{s}=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pTp_{\rm T} spectra as a function of RTR_{\mathrm{T}} in the three azimuthal regions in pp, p−-Pb, and Pb−-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p−-Pb)
    • 

    corecore