2,446 research outputs found

    Developing a self‐consistent description of Titan's upper atmosphere without hydrodynamic escape

    Full text link
    In this study, we develop a best fit description of Titan's upper atmosphere between 500 km and 1500 km, using a one‐dimensional (1‐D) version of the three‐dimensional (3‐D) Titan Global Ionosphere‐Thermosphere Model. For this modeling, we use constraints from several lower atmospheric Cassini‐Huygens investigations and validate our simulation results against in situ Cassini Ion‐Neutral Mass Spectrometer (INMS) measurements of N 2 , CH 4 , H 2 , 40 Ar, HCN, and the major stable isotopic ratios of 14 N/ 15 N in N 2 . We focus our investigation on aspects of Titan's upper atmosphere that determine the amount of atmospheric escape required to match the INMS measurements: the amount of turbulence, the inclusion of chemistry, and the effects of including a self‐consistent thermal balance. We systematically examine both hydrodynamic escape scenarios for methane and scenarios with significantly reduced atmospheric escape. Our results show that the optimum configuration of Titan's upper atmosphere is one with a methane homopause near 1000 km and atmospheric escape rates of 1.41–1.47 ×10 11 CH 4  m −2 s −1 and 1.08 ×10 14  H 2  m −2 s −1 (scaled relative to the surface). We also demonstrate that simulations consistent with hydrodynamic escape of methane systematically produce inferior fits to the multiple validation points presented here. Key Points The methane homopause is most likely near 1000 km altitude Hydrodynamic escape of methane is not required to match INMS Molecular hydrogen is best fit with a methane homopause of 1000 kmPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108005/1/jgra51076.pd

    Optimal operation of the Western Link embedded HVDC connection

    Get PDF
    The Western Link is a new point-to-point embedded HVDC connection due to be commissioned in Great Britain in 2018. This paper investigates the optimal loading of the Western Link with respect to the wider transmission system. The work modelled a representation of behaviour of the wholesale market and system operator actions using mathematical optimisation in the form of an economic dispatch followed by an AC optimal power flow. A range of different system cases was studied using: a representative high voltage transmission network of Great Britain; system planned outages on AC circuits in parallel with the Western Link; system contingencies; and two possible post-contingency Western Link loading rules. It was concluded from the cases studied that the optimal dispatch of power on the Western Link is an affine function of power flow in the parallel AC circuits, modulated by system planned outages and the thermal rating of the Western Link

    Gravitational Instabilities, Chondrule Formation, and the FU Orionis Phenomenon

    Full text link
    Using analytic arguments and numerical simulations, we examine whether chondrule formation and the FU Orionis phenomenon can be caused by the burst-like onset of gravitational instabilities (GIs) in dead zones. At least two scenarios for bursting dead zones can work, in principle. If the disk is on the verge of fragmention, GI activation near r4r\sim4 to 5 AU can produce chondrule-forming shocks, at least under extreme conditions. Mass fluxes are also high enough during the onset of GIs to suggest that the outburst is related to an FU Orionis phenomenon. This situation is demonstrated by numerical simulations. In contrast, as supported by analytic arguments, if the burst takes place close to r1r\sim1 AU, then even low pitch angle spiral waves can create chondrule-producing shocks and outbursts. We also study the stability of the massive disks in our simulations against fragmentation and find that although disk evolution is sensitive to changes in opacity, the disks we study do not fragment, even at high resolution and even for extreme assumptions.Comment: To appear in Ap

    Following the status of visual cortex over time in patients with macular degeneration reveals atrophy of visually deprived brain regions

    Get PDF
    Purpose: Previous research has shown atrophy of visual cortex can occur in retinotopic representations of retinal lesions resulting from eye disease. However, the time course of atrophy cannot be established from these cross-sectional studies, which included patients with long-standing disease of varying severity. Our aim therefore was to measure visual cortical structure over time in participants after onset of unilateral visual loss resulting from age-related macular degeneration (AMD). Methods: Inclusion criteria were onset of acute unilateral neovascular AMD with bilateral dry-AMD based on clinical examination. Therefore, substantial loss of unilateral visual input to cortex was relatively well-defined in time. Changes in cortical anatomy were assessed in the occipital lobe as a whole, and in cortical representations of the lesion and intact retina, the lesion and intact projection zones, respectively. Whole brain, T1-weighted MRI was taken at diagnosis (before anti-angiogenic treatment to stabilise the retina), during the 3-4-month initial treatment period, with a long-term follow-up ~5 (range 3.8 – 6.1 years) years later. Results: Significant cortical atrophy was detected at long-term follow-up only, with a reduction in mean cortical volume across the whole occipital lobe. Importantly, this reduction was explained by cortical thinning of the lesion projection zone, which suggests additional changes to those associated with normal ageing. Over the period of study, anti-angiogenic treatment stabilised visual acuity and central retinal thickness, suggesting that the atrophy detected was most likely governed by long-term decreased visual input. Conclusions: Our results indicate that consequences of eye disease on visual cortex are atrophic and retinotopic. Our work also raises the potential to follow the status of visual cortex in individuals over time to inform on how best to treat patients, particularly with restorative techniques

    Tri-partite complex for axonal transport drug delivery achieves pharmacological effect.

    Get PDF
    BACKGROUND: Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System) neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. RESULTS: We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. CONCLUSION: Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal transport holds great promise. The data shown here provide a basic framework for the intraneural pharmacology of this tripartite complex. The pharmacologically efficacious drug delivery demonstrated here verify the fundamental feasibility of using axonal transport for targeted drug delivery.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    The SWELLS Survey. I. A large spectroscopically selected sample of edge-on late-type lens galaxies

    Get PDF
    The relative contribution of baryons and dark matter to the inner regions of spiral galaxies provides critical clues to their formation and evolution, but it is generally difficult to determine. For spiral galaxies that are strong gravitational lenses, however, the combination of lensing and kinematic observations can be used to break the disk-halo degeneracy. In turn, such data constrain fundamental parameters such as i) the mass density profile slope and axis ratio of the dark matter halo, and by comparison with dark matter-only numerical simulations the modifications imposed by baryons; ii) the mass in stars and therefore the overall star formation efficiency, and the amount of feedback; iii) by comparison with stellar population synthesis models, the normalization of the stellar initial mass function. In this first paper of a series, we present a sample of 16 secure, 1 probable, and 6 possible strong lensing spiral galaxies, for which multi-band high-resolution images and rotation curves were obtained using the Hubble Space Telescope and Keck-II Telescope as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS). The sample includes 8 newly discovered secure systems. [abridged] We find that the SWELLS sample of secure lenses spans a broad range of morphologies (from lenticular to late-type spiral), spectral types (quantified by Halpha emission), and bulge to total stellar mass ratio (0.22-0.85), while being limited to M_*>10^{10.5} M_sun. The SWELLS sample is thus well-suited for exploring the relationship between dark and luminous matter in a broad range of galaxies. We find that the deflector galaxies obey the same size-mass relation as that of a comparison sample of elongated non-lens galaxies selected from the SDSS survey. We conclude that the SWELLS sample is consistent with being representative of the overall population of high-mass high-inclination disky galaxies.Comment: 21 pages, 6 figures, MNRAS, in pres
    corecore