9 research outputs found

    Analyse et modélisation des bases physiologiques de l'induction florale et de l'irrégularité de production en fruits. Application à des génotypes de pommier d'architectures contrastées

    No full text
    Alternate bearing is a common phenomenon for different perennial species. While it can have dramatic economic effects, its causes are still unclear. Alternate bearing results from irregularities in floral induction (FI) between successive years. In apple trees (Malus x domestica), large variability in bearing patterns between genotypes have been observed that are partially affected by architectural characteristics. Moreover, large within tree variability in FI also exists since FI occurs each year in a set of buds, only. Different hypotheses exist to explain between years and within tree variability in FI including the involvement of hormones (mainly gibberellins, GA), other signaling molecules (FT protein) and the carbon balance at different scales of plant organization. This thesis aimed at analyzing and modeling the physiological and architectural determinisms of the within tree and between year variability in floral induction in context of genotypic variability in apple tree. First, physiological analyses (photosynthesis, nonstructural carbohydrates and GA concentration) were performed during 2 years on adult ‘Golden Delicious’ apple trees subjected to different leaf and fruit removal practices in order to modify the leaf/fruit ratio and the distances between the sources of inhibiting and activating signals and shoot apical meristems (SAM). Results showed that effects of fruit and leaves could affect FI in SAM at short distances, only. Moreover, experimental results showed that carbohydrates appeared as not directly implicated in FI but that GA could inhibit FI in SAM. The dataset generated from this experiment was used in a modelling approach aiming at simulating the effects of leaf, fruit, and their distances to SAM on FI. The model simulated FI variability with 3D tree structures by considering the transport of inhibit and activating signal produced by fruit and leaves respectively. Signal transport was simulated considering a signal ‘attenuation’ parameter, whereas SAM fate was determined by probability functions depending on signal amounts. Model parameter estimations suggested a cumulative effect of activating and inhibiting signals on FI, with SAM being more sensitive to the inhibiting signal. Simulations results also proposed that the activating signal was transported at shorter distances than the inhibiting one. Other experiments performed on a set of genotypes issued from an apple collection, showed that the establishment of plant architecture is under the dependency of hormonal signaling (AIA and ABA) and plays a key role in the onset of biennial bearing between the different genotypes. Results also confirm the poor implication of carbohydrates on FI and showed that gibberellins and cytokinins may be implicated in FI variability between genotypes. At the end of this work, new perspectives are proposed for the identification of the signals controlling FI and for integrating genotypic variability in the modeling approach in order to simulate between-year variability in FI and the resulting bearing patterns.L’alternance de production est un phĂ©nomĂšne commun pour diffĂ©rentes espĂšces pĂ©rennes. Bien qu'elle puisse engendrer des effets Ă©conomiques dramatiques, ses causes sont toujours mal comprises. L’alternance de production rĂ©sulte d'irrĂ©gularitĂ©s dans l'induction florale (IF) entre les annĂ©es successives. Chez le pommier (Malus x domestica), une grande variabilitĂ© des rythmes de production entre les gĂ©notypes a Ă©tĂ© observĂ©e, et cette variabilitĂ© est en partie reliĂ©e aux caractĂ©ristiques architecturales des gĂ©notypes. Il existe Ă©galement une grande variabilitĂ© intra-arbre dans l’IF, qui ne se produit que sur un nombre variable de bourgeons chaque annĂ©e. DiffĂ©rentes hypothĂšses existent pour expliquer la variabilitĂ© intra-arbre et interannuelle de l’IF, notamment l'implication des hormones (principalement les gibbĂ©rellines, GA), d'autres molĂ©cules de signalisation (protĂ©ine FT) et du bilan carbonĂ© Ă  diffĂ©rentes Ă©chelles d'organisation de la plante. Cette thĂšse vise Ă  analyser et modĂ©liser les dĂ©terminismes physiologiques et architecturaux de la variabilitĂ© intra-arbre et interannuelle de l’IF dans un contexte de variabilitĂ© gĂ©notypique chez le pommier. Tout d'abord, des analyses physiologiques (photosynthĂšse, carbohydrates non structuraux et concentrations en GA) ont Ă©tĂ© rĂ©alisĂ©es pendant 2 ans sur des pommiers 'Golden Delicious' adultes soumis Ă  des pratiques de suppression des feuilles et des fruits afin de modifier le rapport feuille/fruit et les distances entre les sources des signaux activateurs et inhibiteurs et les mĂ©ristĂšmes apicaux (SAM). Les rĂ©sultats ont montrĂ© que les effets des fruits et des feuilles pouvaient affecter l'IF dans les SAM sur de courtes distances uniquement. De plus, les carbohydrates n'apparaissaient pas directement impliquĂ©s dans l’IF alors que les GA pouvaient inhiber l’IF dans les SAM. L'ensemble de donnĂ©es gĂ©nĂ©rĂ©es Ă  partir de cette expĂ©rience a Ă©tĂ© utilisĂ© dans une approche de modĂ©lisation visant Ă  simuler les effets des feuilles, des fruits et leurs distances par rapport aux SAM sur l’IF. Le modĂšle a permis de simuler la variabilitĂ© de l’IF sur des structures d’arbres en 3D, en considĂ©rant le transport des signaux activateur et inhibiteur produits respectivement par les feuilles et les fruits. Le transport de ces signaux a Ă©tĂ© simulĂ© en considĂ©rant un paramĂštre d’attĂ©nuation du signal, tandis que le devenir des SAM Ă©tait dĂ©terminĂ© par des fonctions de probabilitĂ© en fonction des quantitĂ©s de signaux. Les estimations des paramĂštres du modĂšle ont suggĂ©rĂ© un effet cumulatif des signaux activateur et inhibiteur sur l’IF, les SAM Ă©tant plus sensibles au signal inhibiteur. Les rĂ©sultats des simulations ont Ă©galement proposĂ© que le signal activateur Ă©tait transportĂ© Ă  des distances plus courtes que le signal inhibiteur. D'autres expĂ©riences rĂ©alisĂ©es sur un ensemble de gĂ©notypes issus d'une collection de pommiers ont montrĂ© que la mise en place de l'architecture vĂ©gĂ©tale est sous la dĂ©pendance de la signalisation hormonale (AIA et ABA) et que la dynamique de mise en place de l’architecture joue un rĂŽle clĂ© dans le dĂ©but de l’alternance de production entre les diffĂ©rents gĂ©notypes. Les rĂ©sultats confirment Ă©galement la faible implication des carbohydrates dans l'IF et ont montrĂ© que les gibbĂ©rellines et les cytokinines pourraient ĂȘtre impliquĂ©es dans la variabilitĂ© de l'IF entre les gĂ©notypes. Au terme de ces travaux, de nouvelles perspectives sont proposĂ©es pour l'identification prĂ©cise des signaux contrĂŽlant l’IF et pour intĂ©grer la variabilitĂ© gĂ©notypique dans l'approche de modĂ©lisation afin de simuler la variabilitĂ© interannuelle de l’IF et des rythmes de productions qui en rĂ©sultent

    Analyse et modélisation des bases physiologiques de l'induction florale et de l'irrégularité de production en fruits. Application à des génotypes de pommier d'architectures contrastées

    No full text
    Alternate bearing is a common phenomenon for different perennial species. While it can have dramatic economic effects, its causes are still unclear. Alternate bearing results from irregularities in floral induction (FI) between successive years. In apple trees (Malus x domestica), large variability in bearing patterns between genotypes have been observed that are partially affected by architectural characteristics. Moreover, large within tree variability in FI also exists since FI occurs each year in a set of buds, only. Different hypotheses exist to explain between years and within tree variability in FI including the involvement of hormones (mainly gibberellins, GA), other signaling molecules (FT protein) and the carbon balance at different scales of plant organization. This thesis aimed at analyzing and modeling the physiological and architectural determinisms of the within tree and between year variability in floral induction in context of genotypic variability in apple tree. First, physiological analyses (photosynthesis, nonstructural carbohydrates and GA concentration) were performed during 2 years on adult ‘Golden Delicious’ apple trees subjected to different leaf and fruit removal practices in order to modify the leaf/fruit ratio and the distances between the sources of inhibiting and activating signals and shoot apical meristems (SAM). Results showed that effects of fruit and leaves could affect FI in SAM at short distances, only. Moreover, experimental results showed that carbohydrates appeared as not directly implicated in FI but that GA could inhibit FI in SAM. The dataset generated from this experiment was used in a modelling approach aiming at simulating the effects of leaf, fruit, and their distances to SAM on FI. The model simulated FI variability with 3D tree structures by considering the transport of inhibit and activating signal produced by fruit and leaves respectively. Signal transport was simulated considering a signal ‘attenuation’ parameter, whereas SAM fate was determined by probability functions depending on signal amounts. Model parameter estimations suggested a cumulative effect of activating and inhibiting signals on FI, with SAM being more sensitive to the inhibiting signal. Simulations results also proposed that the activating signal was transported at shorter distances than the inhibiting one. Other experiments performed on a set of genotypes issued from an apple collection, showed that the establishment of plant architecture is under the dependency of hormonal signaling (AIA and ABA) and plays a key role in the onset of biennial bearing between the different genotypes. Results also confirm the poor implication of carbohydrates on FI and showed that gibberellins and cytokinins may be implicated in FI variability between genotypes. At the end of this work, new perspectives are proposed for the identification of the signals controlling FI and for integrating genotypic variability in the modeling approach in order to simulate between-year variability in FI and the resulting bearing patterns.L’alternance de production est un phĂ©nomĂšne commun pour diffĂ©rentes espĂšces pĂ©rennes. Bien qu'elle puisse engendrer des effets Ă©conomiques dramatiques, ses causes sont toujours mal comprises. L’alternance de production rĂ©sulte d'irrĂ©gularitĂ©s dans l'induction florale (IF) entre les annĂ©es successives. Chez le pommier (Malus x domestica), une grande variabilitĂ© des rythmes de production entre les gĂ©notypes a Ă©tĂ© observĂ©e, et cette variabilitĂ© est en partie reliĂ©e aux caractĂ©ristiques architecturales des gĂ©notypes. Il existe Ă©galement une grande variabilitĂ© intra-arbre dans l’IF, qui ne se produit que sur un nombre variable de bourgeons chaque annĂ©e. DiffĂ©rentes hypothĂšses existent pour expliquer la variabilitĂ© intra-arbre et interannuelle de l’IF, notamment l'implication des hormones (principalement les gibbĂ©rellines, GA), d'autres molĂ©cules de signalisation (protĂ©ine FT) et du bilan carbonĂ© Ă  diffĂ©rentes Ă©chelles d'organisation de la plante. Cette thĂšse vise Ă  analyser et modĂ©liser les dĂ©terminismes physiologiques et architecturaux de la variabilitĂ© intra-arbre et interannuelle de l’IF dans un contexte de variabilitĂ© gĂ©notypique chez le pommier. Tout d'abord, des analyses physiologiques (photosynthĂšse, carbohydrates non structuraux et concentrations en GA) ont Ă©tĂ© rĂ©alisĂ©es pendant 2 ans sur des pommiers 'Golden Delicious' adultes soumis Ă  des pratiques de suppression des feuilles et des fruits afin de modifier le rapport feuille/fruit et les distances entre les sources des signaux activateurs et inhibiteurs et les mĂ©ristĂšmes apicaux (SAM). Les rĂ©sultats ont montrĂ© que les effets des fruits et des feuilles pouvaient affecter l'IF dans les SAM sur de courtes distances uniquement. De plus, les carbohydrates n'apparaissaient pas directement impliquĂ©s dans l’IF alors que les GA pouvaient inhiber l’IF dans les SAM. L'ensemble de donnĂ©es gĂ©nĂ©rĂ©es Ă  partir de cette expĂ©rience a Ă©tĂ© utilisĂ© dans une approche de modĂ©lisation visant Ă  simuler les effets des feuilles, des fruits et leurs distances par rapport aux SAM sur l’IF. Le modĂšle a permis de simuler la variabilitĂ© de l’IF sur des structures d’arbres en 3D, en considĂ©rant le transport des signaux activateur et inhibiteur produits respectivement par les feuilles et les fruits. Le transport de ces signaux a Ă©tĂ© simulĂ© en considĂ©rant un paramĂštre d’attĂ©nuation du signal, tandis que le devenir des SAM Ă©tait dĂ©terminĂ© par des fonctions de probabilitĂ© en fonction des quantitĂ©s de signaux. Les estimations des paramĂštres du modĂšle ont suggĂ©rĂ© un effet cumulatif des signaux activateur et inhibiteur sur l’IF, les SAM Ă©tant plus sensibles au signal inhibiteur. Les rĂ©sultats des simulations ont Ă©galement proposĂ© que le signal activateur Ă©tait transportĂ© Ă  des distances plus courtes que le signal inhibiteur. D'autres expĂ©riences rĂ©alisĂ©es sur un ensemble de gĂ©notypes issus d'une collection de pommiers ont montrĂ© que la mise en place de l'architecture vĂ©gĂ©tale est sous la dĂ©pendance de la signalisation hormonale (AIA et ABA) et que la dynamique de mise en place de l’architecture joue un rĂŽle clĂ© dans le dĂ©but de l’alternance de production entre les diffĂ©rents gĂ©notypes. Les rĂ©sultats confirment Ă©galement la faible implication des carbohydrates dans l'IF et ont montrĂ© que les gibbĂ©rellines et les cytokinines pourraient ĂȘtre impliquĂ©es dans la variabilitĂ© de l'IF entre les gĂ©notypes. Au terme de ces travaux, de nouvelles perspectives sont proposĂ©es pour l'identification prĂ©cise des signaux contrĂŽlant l’IF et pour intĂ©grer la variabilitĂ© gĂ©notypique dans l'approche de modĂ©lisation afin de simuler la variabilitĂ© interannuelle de l’IF et des rythmes de productions qui en rĂ©sultent

    Analysis and modeling of the physiological bases of floral induction and fruit production irregularity. Application to apple tree genotypes with contrasted architectures

    No full text
    L’alternance de production est un phĂ©nomĂšne commun pour diffĂ©rentes espĂšces pĂ©rennes. Bien qu'elle puisse engendrer des effets Ă©conomiques dramatiques, ses causes sont toujours mal comprises. L’alternance de production rĂ©sulte d'irrĂ©gularitĂ©s dans l'induction florale (IF) entre les annĂ©es successives. Chez le pommier (Malus x domestica), une grande variabilitĂ© des rythmes de production entre les gĂ©notypes a Ă©tĂ© observĂ©e, et cette variabilitĂ© est en partie reliĂ©e aux caractĂ©ristiques architecturales des gĂ©notypes. Il existe Ă©galement une grande variabilitĂ© intra-arbre dans l’IF, qui ne se produit que sur un nombre variable de bourgeons chaque annĂ©e. DiffĂ©rentes hypothĂšses existent pour expliquer la variabilitĂ© intra-arbre et interannuelle de l’IF, notamment l'implication des hormones (principalement les gibbĂ©rellines, GA), d'autres molĂ©cules de signalisation (protĂ©ine FT) et du bilan carbonĂ© Ă  diffĂ©rentes Ă©chelles d'organisation de la plante. Cette thĂšse vise Ă  analyser et modĂ©liser les dĂ©terminismes physiologiques et architecturaux de la variabilitĂ© intra-arbre et interannuelle de l’IF dans un contexte de variabilitĂ© gĂ©notypique chez le pommier. Tout d'abord, des analyses physiologiques (photosynthĂšse, carbohydrates non structuraux et concentrations en GA) ont Ă©tĂ© rĂ©alisĂ©es pendant 2 ans sur des pommiers 'Golden Delicious' adultes soumis Ă  des pratiques de suppression des feuilles et des fruits afin de modifier le rapport feuille/fruit et les distances entre les sources des signaux activateurs et inhibiteurs et les mĂ©ristĂšmes apicaux (SAM). Les rĂ©sultats ont montrĂ© que les effets des fruits et des feuilles pouvaient affecter l'IF dans les SAM sur de courtes distances uniquement. De plus, les carbohydrates n'apparaissaient pas directement impliquĂ©s dans l’IF alors que les GA pouvaient inhiber l’IF dans les SAM. L'ensemble de donnĂ©es gĂ©nĂ©rĂ©es Ă  partir de cette expĂ©rience a Ă©tĂ© utilisĂ© dans une approche de modĂ©lisation visant Ă  simuler les effets des feuilles, des fruits et leurs distances par rapport aux SAM sur l’IF. Le modĂšle a permis de simuler la variabilitĂ© de l’IF sur des structures d’arbres en 3D, en considĂ©rant le transport des signaux activateur et inhibiteur produits respectivement par les feuilles et les fruits. Le transport de ces signaux a Ă©tĂ© simulĂ© en considĂ©rant un paramĂštre d’attĂ©nuation du signal, tandis que le devenir des SAM Ă©tait dĂ©terminĂ© par des fonctions de probabilitĂ© en fonction des quantitĂ©s de signaux. Les estimations des paramĂštres du modĂšle ont suggĂ©rĂ© un effet cumulatif des signaux activateur et inhibiteur sur l’IF, les SAM Ă©tant plus sensibles au signal inhibiteur. Les rĂ©sultats des simulations ont Ă©galement proposĂ© que le signal activateur Ă©tait transportĂ© Ă  des distances plus courtes que le signal inhibiteur. D'autres expĂ©riences rĂ©alisĂ©es sur un ensemble de gĂ©notypes issus d'une collection de pommiers ont montrĂ© que la mise en place de l'architecture vĂ©gĂ©tale est sous la dĂ©pendance de la signalisation hormonale (AIA et ABA) et que la dynamique de mise en place de l’architecture joue un rĂŽle clĂ© dans le dĂ©but de l’alternance de production entre les diffĂ©rents gĂ©notypes. Les rĂ©sultats confirment Ă©galement la faible implication des carbohydrates dans l'IF et ont montrĂ© que les gibbĂ©rellines et les cytokinines pourraient ĂȘtre impliquĂ©es dans la variabilitĂ© de l'IF entre les gĂ©notypes. Au terme de ces travaux, de nouvelles perspectives sont proposĂ©es pour l'identification prĂ©cise des signaux contrĂŽlant l’IF et pour intĂ©grer la variabilitĂ© gĂ©notypique dans l'approche de modĂ©lisation afin de simuler la variabilitĂ© interannuelle de l’IF et des rythmes de productions qui en rĂ©sultent.Alternate bearing is a common phenomenon for different perennial species. While it can have dramatic economic effects, its causes are still unclear. Alternate bearing results from irregularities in floral induction (FI) between successive years. In apple trees (Malus x domestica), large variability in bearing patterns between genotypes have been observed that are partially affected by architectural characteristics. Moreover, large within tree variability in FI also exists since FI occurs each year in a set of buds, only. Different hypotheses exist to explain between years and within tree variability in FI including the involvement of hormones (mainly gibberellins, GA), other signaling molecules (FT protein) and the carbon balance at different scales of plant organization. This thesis aimed at analyzing and modeling the physiological and architectural determinisms of the within tree and between year variability in floral induction in context of genotypic variability in apple tree. First, physiological analyses (photosynthesis, nonstructural carbohydrates and GA concentration) were performed during 2 years on adult ‘Golden Delicious’ apple trees subjected to different leaf and fruit removal practices in order to modify the leaf/fruit ratio and the distances between the sources of inhibiting and activating signals and shoot apical meristems (SAM). Results showed that effects of fruit and leaves could affect FI in SAM at short distances, only. Moreover, experimental results showed that carbohydrates appeared as not directly implicated in FI but that GA could inhibit FI in SAM. The dataset generated from this experiment was used in a modelling approach aiming at simulating the effects of leaf, fruit, and their distances to SAM on FI. The model simulated FI variability with 3D tree structures by considering the transport of inhibit and activating signal produced by fruit and leaves respectively. Signal transport was simulated considering a signal ‘attenuation’ parameter, whereas SAM fate was determined by probability functions depending on signal amounts. Model parameter estimations suggested a cumulative effect of activating and inhibiting signals on FI, with SAM being more sensitive to the inhibiting signal. Simulations results also proposed that the activating signal was transported at shorter distances than the inhibiting one. Other experiments performed on a set of genotypes issued from an apple collection, showed that the establishment of plant architecture is under the dependency of hormonal signaling (AIA and ABA) and plays a key role in the onset of biennial bearing between the different genotypes. Results also confirm the poor implication of carbohydrates on FI and showed that gibberellins and cytokinins may be implicated in FI variability between genotypes. At the end of this work, new perspectives are proposed for the identification of the signals controlling FI and for integrating genotypic variability in the modeling approach in order to simulate between-year variability in FI and the resulting bearing patterns

    A modelling framework for the simulation of signal transport within 3D structure: application for the simulation of within-tree variability in floral induction in apple trees

    Get PDF
    Special issue in in silico PlantsInternational audienceOrgan development and meristem fate is partly determined by endogenous signals moving within plants. These signals (e.g. hormones, sugar
) originate from organs considered as sources (roots, leaves, seeds
) and act on meristems to trigger developmental processes such as transition toward flowering. Functional structural plant model (FSPM) are of major interest as they are based on an explicit description of plant architecture needed for simulating transports within plants. Transport or fluxes have been modeled in FSPM with a special consideration on carbon allocation (GĂ©nard et al., 2008). Approaches for simulating hormone fluxes are scarce, adapted to plant with simple architecture and usually associated with a comprehensive knowledge on the processes to be simulated (Prusinkiewicz et al., 2009); thus limiting their adaptability in various contexts. In this study, we present a generic model for simulating signal fluxes and their impact on meristem fates in complex 3D tree structure. We applied this model to the simulation of within tree variability of floral induction in the apple tree, as a first case of study. Previous experiments (Belhassine et al., 2019) showed that floral induction in meristems occurs less often in the presence of fruit whereas it is favoured by the presence of leaves. Furthermore, the influences of fruit and leaves on the floral induction of meristems depend on the distances of those organs within the tree structure. Fruit and leaves were thus assumed to be sources of inhibiting signals (possibly gibberellins from seeds) and activating signals (possibly FT protein), respectively. However, the distance at which these signals move within the structure and the relative sensitivity of the meristems to these signals are highly difficult to estimate from experimental studies, only

    A genotype-specific architectural and physiological profile is involved in the flowering regularity of apple trees

    No full text
    International audienceIn polycarpic plants, meristem fate varies within individuals in a given year. In perennials, the proportion of floral induction (FI) in meristems also varies between consecutive years and among genotypes of a given species. Previous studies have suggested that FI of meristems could be determined by the within-plant competition for carbohydrates and by hormone signaling as key components of the flowering pathway. At the genotypic level, variability in FI was also associated with variability in architectural traits. However, the part of genotype-dependent variability in FI that can be explained by either tree architecture or tree physiology is still not fully understood. This study aimed at deciphering the respective effect of architectural and physiological traits on FI variability within apple trees by comparing six genotypes with contrasted architectures. Shoot type demography as well as the flowering and fruit production patterns were followed over 6 years and characterized by different indexes. Architectural morphotypes were then defined based on architectural traits using a clustering approach. For two successive years, non-structural starch content in leaf, stem and meristems, and hormonal contents (gibberellins, cytokinins, auxin and abscisic acid) in meristems were quantified and correlated to FI within-tree proportions. Based on a multi-step regression analysis, cytokinins and gibberellins content in meristem, starch content in leaves and the proportion of long shoots in tree annual growth were shown to contribute to FI. Although the predictive linear model of FI was common to all genotypes, each of the explicative variables had a different weight in FI determination, depending on the genotype. Our results therefore suggest both a common determination model and a genotype-specific architectural and physiological profile linked to its flowering behavior

    Modelling transport of inhibiting and activating signals and their combined effects on floral induction: application to apple tree

    Get PDF
    International audienceFloral induction (FI) in shoot apical meristems (SAM) is assumed to be triggered by antagonistic endogenous signals. In fruit trees, FI occurs in some SAM only and is determined by activating and inhibiting signals originating from leaves and fruit, respectively. We developed a model (SigFlow) to quantify on 3D structures the combined impact of such signals and distances at which they act on SAM. Signal transport was simulated considering a signal ‘attenuation’ parameter, whereas SAM fate was determined by probability functions depending on signal quantities. Model behaviour was assessed on simple structures before being calibrated and validated on a unique experimental dataset of 3D digitized apple trees with contrasted crop loads and subjected to leaf and fruit removal at different scales of tree organization. Model parameter estimations and comparisons of two signal combination functions led us to formulate new assumptions on the mechanisms involved: (i) the activating signal could be transported at shorter distances than the inhibiting one (roughly 50 cm vs 1 m) (ii) both signals jointly act to determine FI with SAM being more sensitive to inhibiting signal than activating one. Finally, the genericity of the model is promising to further understand the physiological and architectural determinisms of FI in plants

    Fruit growth and photosynthesis are differentially affected by local variation in source/sink relations

    No full text
    International audienceTree crop load affects carbon acquisition as well as processes like floral induction or fruit growth. Nevertheless little is known about the impact of local variations of source / sink relationships on these processes variability within the tree. This study aims at investigating the effects of local manipulation of source / sink relationships through leaf or fruit removal on photosynthesis and fruit growth. Experiments were conducted in 2016 and 2017 on adult ‘Golden’ trees planted in the south of France. On trees in either high or low crop loads, 11 leaf or fruit removal treatments were set up early June. Treatments were performed at shoot or branch scales or one side of Y-shape trees. Photosynthesis was measured in June and August on the foliated parts of leaf-removal-treatment trees and on both the fructified and de-fructified parts of fruit-removal-treatment trees. At harvest, mean fruit weight was evaluated on the different parts of the trees. This study suggests a strong impact of the tree crop load on photosynthesis without any clear impact of the local fruit presence. Moreover, fruit weight was decreased on the defoliated parts when defoliation was performed on branches or on one side of the trees. This could suggest that trees are not able to exchange assimilates at long distances but also that defoliation caused a decrease in water transpiration with possible consequences on phloem-xylem fluxes. Conversely, our results show that long distant transport occurs between fructified and de-fructified parts of the tree. This is probably due to the very low demand of carbon in de-fructified parts which allows carbon fluxes to the fructified parts. This study gives new knowledge on the effects of source / sink distances on carbon acquisition and transport suggesting that the distance effects could differ depending on the process. These experiments will be used to calibrate a model built to simulate carbon transport within trees
    corecore