13 research outputs found

    Protection of Double-Stranded RNA via Complexation with Double Hydrophilic Block Copolymers: Influence of Neutral Block Length in Biologically Relevant Environments

    Get PDF
    Interaction between the anionic phosphodiester backbone of DNA/RNA and polycations can be exploited as a means of delivering genetic material for therapeutic and agrochemical applications. In this work, quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N,N-dimethylacrylamide) (PQDMAEMA-b-PDMAm) double hydrophilic block copolymers (DHBCs) were synthesized via reversible addition–fragmentation chain-transfer (RAFT) polymerization as nonviral delivery vehicles for double-stranded RNA. The assembly of DHBCs and dsRNA forms distinct polyplexes that were thoroughly characterized to establish a relationship between the length of the uncharged poly(N,N-dimethylacrylamide) (PDMA) block and the polyplex size, complexation efficiency, and colloidal stability. Dynamic light scattering reveals the formation of smaller polyplexes with increasing PDMA lengths, while gel electrophoresis confirms that these polyplexes require higher N/P ratio for full complexation. DHBC polyplexes exhibit enhanced stability in low ionic strength environments in comparison to homopolymer-based polyplexes. In vitro enzymatic degradation assays demonstrate that both homopolymer and DHBC polymers efficiently protect dsRNA from degradation by RNase A enzyme

    Characterisation of polyphosphate coated aluminium-doped titania nanoparticles during milling

    Get PDF
    This paper investigates the characterisation of alumina-doped titania nanoparticles, milled under high-shear over time, in the presence of sodium hexametaphosphate (SHMP) dispersant. Transmission electron microscopy (TEM) indicated that prolonged milling times led to the formation of 10 nm particle fines which were electrostatically attracted to larger particles, where no change in the crystal structure was observed. The primary particle size measured by dynamic light scattering (DLS) and TEM were in agreement and showed no change in primary particle size (∌250 nm) with respect to milling time, however, there was a clear reduction in the magnitude of the slow mode decay associated to aggregates. The TiO₂ was found to have an isoelectric point (iep) in the range of pH 3 to 4.5, where an increase in milling time led to a lower pHiep, indicative of an increase in SHMP coverage, which was further supported by an intensification in phosphorus content measured by X-ray fluorescence (XRF). Phosphorus content and zeta potential analysis before and after centrifugal washing showed that SHMP was partially removed or hydrolysed for the longer milled pigment samples, whereas no change was observed for shorter milled samples. Relaxation NMR was also performed, where enhanced relaxation rates at longer milling times were associated partially to increases in surface area and exposure of Al sites, as well as physicochemical changes to SHMP density and structure. It is thought that extended milling times may lead to hydrolysis or other structural changes of the dispersant from the high energy milling conditions, allowing easier removal of SHMP for longer milled pigments

    Phoenix Is Required for Mechanosensory Hair Cell Regeneration in the Zebrafish Lateral Line

    Get PDF
    In humans, the absence or irreversible loss of hair cells, the sensory mechanoreceptors in the cochlea, accounts for a large majority of acquired and congenital hearing disorders. In the auditory and vestibular neuroepithelia of the inner ear, hair cells are accompanied by another cell type called supporting cells. This second cell population has been described as having stem cell-like properties, allowing efficient hair cell replacement during embryonic and larval/fetal development of all vertebrates. However, mammals lose their regenerative capacity in most inner ear neuroepithelia in postnatal life. Remarkably, reptiles, birds, amphibians, and fish are different in that they can regenerate hair cells throughout their lifespan. The lateral line in amphibians and in fish is an additional sensory organ, which is used to detect water movements and is comprised of neuroepithelial patches, called neuromasts. These are similar in ultra-structure to the inner ear's neuroepithelia and they share the expression of various molecular markers. We examined the regeneration process in hair cells of the lateral line of zebrafish larvae carrying a retroviral integration in a previously uncharacterized gene, phoenix (pho). Phoenix mutant larvae develop normally and display a morphologically intact lateral line. However, after ablation of hair cells with copper or neomycin, their regeneration in pho mutants is severely impaired. We show that proliferation in the supporting cells is strongly decreased after damage to hair cells and correlates with the reduction of newly formed hair cells in the regenerating phoenix mutant neuromasts. The retroviral integration linked to the phenotype is in a novel gene with no known homologs showing high expression in neuromast supporting cells. Whereas its role during early development of the lateral line remains to be addressed, in later larval stages phoenix defines a new class of proteins implicated in hair cell regeneration

    Characterization of Sodium Carboxymethyl Cellulose Aqueous Solutions to Support Complex Product Formulation: A Rheology and Light Scattering Study

    Get PDF
    Sodium carboxymethyl cellulose (Na CMC) is used for its thickening and swelling properties in a wide range of complex formulated products for pharmaceutical, food, home, and personal care applications, as well as in paper, water treatment, and mineral processing industries. To design Na CMC solutions for applications, a detailed understanding of the concentration-dependent rheology and relaxation response is needed. We address this here by investigating aqueous Na CMC solutions over a wide range of concentrations using rheology as well as static and dynamic light scattering. The concentration dependence of the solution specific viscosities ηsp could be described using a set of three power laws, as predicted from the scaling theory of polyelectrolytes. Alternatively, a simpler approach could be used, which interpolates between two power law regimes and introduces only one characteristic crossover concentration. We interpret the observed behavior as a transition from the semidilute nonentangled to the entangled concentration regimes; this transition behavior was not observed in the solution structure, as determined using static light scattering. Dynamic light scattering revealed three relaxation modes. The two fastest relaxations were assigned as the “fast” and “slow” relaxation modes typically observed in salt-free or not fully screened polyelectrolyte solutions within the semidilute concentration range. The third, typically weak mode, was attributed to the presence of a small amount of poorly dissolved cellulose residuals. Since filtration altered the solution behavior, without sufficiently removing the residuals, data collection and processing were adapted to account for this, which facilitated a detailed light scattering investigation of the original solutions, relevant for industrial applications. The relaxation time characterizing the fast mode, τf, was concentration independent; whereas the relaxation time of the slow mode, τs, demonstrated similar crossover behavior as observed for the specific viscosity, further demonstrating the dynamic nature of the crossover
    corecore