66 research outputs found
The Initial Mass Function in the Galactic Center
The Galactic Center contains the most massive young clusters in the Galaxy
and serves as the closest example of a massive starburst region. Our recent
results suggest that the Galactic Center environment produces massive clusters
with relatively flat initial mass functions, as might be expected on
theoretical grounds. I will discuss these recent results, along with evidence
for star formation in the immediate vicinity of the super massive black hole at
the Galactic Center. The results of this work might be useful in extrapolating
to other galactic centers with similar conditions, as well as other starburst
regions
Formation, evolution and multiplicity of brown dwarfs and giant exoplanets
This proceeding summarises the talk of the awardee of the Spanish
Astronomical Society award to the the best Spanish thesis in Astronomy and
Astrophysics in the two-year period 2006-2007. The thesis required a tremendous
observational effort and covered many different topics related to brown dwarfs
and exoplanets, such as the study of the mass function in the substellar domain
of the young sigma Orionis cluster down to a few Jupiter masses, the relation
between the cluster stellar and substellar populations, the accretion discs in
cluster brown dwarfs, the frequency of very low-mass companions to nearby young
stars at intermediate and wide separations, or the detectability of Earth-like
planets in habitable zones around ultracool (L- and T-type) dwarfs in the solar
neighbourhood.Comment: "Highlights of Spanish Astrophysics V", Proceedings of the VIII
Scientific Meeting of the Spanish Astronomical Society (SEA) held in
Santander, 7-11 July, 2008. Edited by J. Gorgas, L. J. Goicoechea, J. I.
Gonzalez-Serrano, J. M. Diego. Invited oral contribution to plenary sessio
The infrared properties of active extragalactic nuclei
In this paper we review the observed infrared properties of the general classes of active extragalactic nuclei with the purpose of relating the observations to the mechanisms responsible for the emission processes. We will first give a summary of those observations which define the energy distributions and emission line ratios of broad groups of objects. We will intersperse measurements of specific features throughout the discussion that illustrate definite emission mechanisms
Manifestations of a Massive Black Hole in the Galactic Center
A young star cluster is a less contrived explanation than a massive black hole for many of the features seen in the Galactic center. However from a Copernican point of view, this explanation is less attractive than a black hole. The evidence for a ~ 10^6 M_⊙ black hole is becoming progressively less convincing, but the case against it is no stronger. We describe the development of a singular star cluster, as well as the processes of stellar disruption, merging, and gas accretion in such a cluster. Recently merged stars and tidally stripped giants may be detectable within an arcminute of the Galactic Center. We examine the physics of star formation in the inner parsecs of the galaxy, and the problem of maintaining the two parsec molecular torus
Atmospheric electrification in dusty, reactive gases in the solar system and beyond
Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation
Recommended from our members
A 10 MICRON SURVEY OF STAR FORMATION IN GALACTIC NUCLEI - VIRGO SPIRAL GALAXIES
512-52
- …