5 research outputs found

    Evaluation of Serum Superoxide Dismutase Activity, Malondialdehyde, and Zinc and Copper Levels in Patients With Keratoconus

    No full text
    WOS: 000387863300009PubMed ID: 27617869Purpose: The aim of this study was to evaluate the relationship between antioxidant superoxide dismutase (SOD) enzyme activity, malondialdehyde (MDA) as a lipid peroxidation marker, and some trace elements such as zinc (Zn) and copper (Cu) levels in patients with keratoconus. Methods: A total of 58 patients with keratoconus and 53 control subjects with similar age and sex were evaluated in this study. The modified Krumeich keratoconus classification was used to divide the patients into 4 stages. Serum SOD activity, MDA, and zinc and copper levels were compared between the patient and control groups. Results: The median serum SOD activity, MDA, and Zn and Cu levels were 27.2 (42.4-13.7) U/mL, 10.2 (11.9-8.5) nmol/mL, 87.9 (104.6-76.5) mu mol/L, and 103.2 (117.9-90.3) mu mol/L in the keratoconus group and 26.2 (32.5-14.4) U/mL, 8.8 (11.4-7.1) nmol/mL, 100.5 (121.1-81.8) mu mol/L, and 98.4 (120.3-83.4) mu mol/L in the control group, respectively. There was a statistically significant difference between the MDA and Zn levels of the keratoconus group and control subjects but not between the respective SOD activities or Cu levels (P = 0.016, P = 0.031, P = 0.440, and P = 0.376, respectively). We found no significant difference between the keratoconus group stages for serum SOD activity, serum MDA, and Zn and Cu levels (P > 0.05), and there was also no significant correlation between the keratoconus group stages and serum SOD activity, serum MDA, and Zn and Cu levels (P > 0.05). Conclusions: There is imbalance in the systemic oxidant/antioxidant status where Zn deficiency also plays a role in patients with keratoconus

    Multiple immunoassay interference in a patient with falsely elevated calcitonin

    No full text
    Calcitonin (CT) is a diagnostic and follow-up marker of medullary thyroid carcinoma. Heterophile antibodies (HAbs) may interfere during immunometric assay measurements and result in falsely high CT levels and different markers. A 50-year-old female patient was referred to our institution for elevated CT levels (3,199 pg/mL [0-11,5]). Physical examination and thyroid ultrasonography show no thyroid nodules. Because of the discrepancy between the clinical picture and the laboratory results, various markers and hormones were examined to determine whether there was any interference in the immunometric assay. Thyroglobulin (Tg) and Adrenocorticotropic hormone (ACTH) levels were also found inaccurately elevated. After precipitation with polyethylene glycol, CT, Tg, and ACTH levels markedly decreased, showing macro-aggregates. Also, serial dilutions showed non-linearity in plasma concentrations. Additionally, CT samples were pretreated with a heterophilic blocking tube before measuring, and the CT level decreased to < 0.1 pg/mL, suggesting a HAb presence. Immunoassay interference should be considered when conflicting laboratory data are observed. This may help reduce the amount of unnecessary laboratory and imaging studies and prevent patients from complex diagnostic procedures

    Protective effects of the nuclear factor kappa B inhibitor pyrrolidine dithiocarbamate in bladder ischemia-reperfusion injury in rats

    No full text
    The aim of the present study was to evaluate the protective effects of the NF-(DB)-B-0 inhibition with pyrrolidine-dithiocarbamate (PDTC) in ischemia-reperfusion (I/R) injury in the rat bladder. Twenty-four Sprague-Dawley male rats were divided into three groups. Group I; (n = 8) control, group II; (n = 8) I/R group; group III (n = 8) I/R and PDTC treatment. Superoxide dismutase (SOD), catalase (CAT), and gluatathione-S-transferase (GST) enzymes was studied in bladder tissue. Lipid peroxidation (as TBARS) levels in tissue homogenate were measured with thiobarbituric acid reaction. All the slides were stained with NF-(DB)-B-0, p53 and HSP60 immunohistochemistry for detection genome destruction and tissue stress, respectively. Our results show that the mean TBARS levels were significantly higher in group II (p < 0.05). The TBARS levels were significantly decreased in group III compared with the group II (p < 0.05). CAT, SOD and GST activities were decreased in group II, but these enzymes levels were significantly increased in group III according to the group II (p < 0.05). Under microscopic evaluation NF-(DB)-B-0 expression increased significantly in group II compared to the group I (p < 0.05) and then decreased in group III (p < 0.05). HSP60 and p53 expression in group II was increased significantly compared with group I. Under microscopic evaluation we detected that HSP60 and p53 expression was increased significantly in group II compared with group I. In group III PDTC administration was decreased the HSP60 and p53 expression, this difference was statistically significant (p < 0.05). The results of the present study have demonstrated that NF-(DB)-B-0 inhibition with PDTC protects and provides beneficial effects on ischemia/reperfusion stress related bladder tissue destruction

    Effects of dexmedetomidine on renal tissue after lower limb ischemia reperfusion injury in streptozotocin induced diabetic rats

    No full text
    Aim: The aim of this study was to investigate whether dexmedetomidine - administered before ischemia - has protective effects against lower extremity ischemia reperfusion injury that induced by clamping and subsequent declamping of infra-renal abdominal aorta in streptozotocin-induced diabetic rats. Material and Methods: After obtaining ethical committee approval, four study groups each containing six rats were created (Control (Group C), diabetes-control (Group DM-C), diabetes I/R (Group DM-I/R), and diabetes-I/R-dexmedetomidine (Group DM-I/R-D). In diabetes groups, single-dose (55 mg/kg) streptozotocin was administered intraperitoneally. Rats with a blood glucose level above 250 mg/dl at the 72nd hour were accepted as diabetic. At the end of four weeks, laparotomy was performed in all rats. Nothing else was done in Group C and DMC. In Group DM-I/R, ischemia reperfusion was produced via two-hour periods of clamping and subsequent declamping of infra-renal abdominal aorta. In Group DM-I/R-D, 100 mu g/kg dexmedetomidine was administered intraperitoneally 30 minutes before ischemia period. At the end of reperfusion, period biochemical and histopathological evaluation of renal tissue specimen were performed. Results: Thiobarbituric acid reactive substance (TBARS), Superoxide dismutase (SOD), Nitric oxide synthase (NOS), Catalase (CAT) and Glutathion S transferase (GST) levels were found significantly higher in Group DM-I/R when compared with Group C and Group DM-C. In the dexmedetomidine-treated group, TBARS, NOS, CAT, and GST levels were significantly lower than those measured in the Group D-I/R. In histopathological evaluation, glomerular vacuolization (GV), tubular dilatation (TD), vascular vacuolization and hypertrophy (VVH), tubular cell degeneration and necrosis (TCDN), tubular hyaline cylinder (THC), leucocyte infiltration (LI), and tubular cell spillage (TCS) in Group DM-I/R were significantly increased when compared with the control group. Also, GV, VVH, and THC levels in the dexmedetomidine-treated group (Group DM-I/R-D) were found significantly decreased when compared with the Group DM-I/R. Conclusion: We found that dexmedetomidine - 100 mu g/kg intraperitoneally - administered 30 minutes before ischemia in diabetic rats ameliorates lipid peroxidation, oxidative stress, and I-R-related renal injury. We suggest that dexmedetomidine administration in diabetic rats before I/R has renoprotective effects
    corecore