549 research outputs found

    Optomechanically induced transparency in membrane-in-the-middle setup at room temperature

    Full text link
    We demonstrate the analogue of electromagnetically induced transparency in a room temperature cavity optomechanics setup formed by a thin semitransparent membrane within a Fabry-P\'erot cavity. Due to destructive interference, a weak probe field is completely reflected by the cavity when the pump beam is resonant with the motional red sideband of the cavity. Under this condition we infer a significant slowing down of light of hundreds of microseconds, which is easily tuned by shifting the membrane along the cavity axis. We also observe the associated phenomenon of electromagnetically induced amplification which occurs due to constructive interference when the pump is resonant with the blue sideband.Comment: 5 pages, 4 figure

    Trigger-disabling Acquisition System for Quantum Key Distribution failsafe against Self-blinding

    Full text link
    Modern single-photon detectors based on avalanche photodiodes offer increasingly higher triggering speeds, thus fostering their use in several fields, prominently in the recent area of Quantum Key Distribution. To reduce the probability of an afterpulse, these detectors are usually equipped with a circuitry that disables the trigger for a certain time after a positive detection event, known as dead time. If the acquisition system connected to the detector is not properly designed, efficiency issues arise when the triggering rate is faster than the inverse of detector's dead-time. Moreover, when this happens with two or more detectors used in coincidence, a security risk called "self-blinding" can jeopardize the distribution of a secret quantum key. In this paper we introduce a trigger-disabling circuitry based on an FPGA-driven feedback loop, so to avoid the above-mentioned inconveniences. In the regime of single-photon-attenuated light, the electronics dynamically accept a trigger only after detectors' complete recovery from dead-time. This technique proves useful to work with detectors at their maximum speed and to increase the security of a quantum key distribution setup.Comment: 5 pages, 3 figures. Version 2 corrected and improve

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets
    corecore