8,812 research outputs found

    Jet Shapes and Jet Algorithms in SCET

    Get PDF
    Jet shapes are weighted sums over the four-momenta of the constituents of a jet and reveal details of its internal structure, potentially allowing discrimination of its partonic origin. In this work we make predictions for quark and gluon jet shape distributions in N-jet final states in e+e- collisions, defined with a cone or recombination algorithm, where we measure some jet shape observable on a subset of these jets. Using the framework of Soft-Collinear Effective Theory, we prove a factorization theorem for jet shape distributions and demonstrate the consistent renormalization-group running of the functions in the factorization theorem for any number of measured and unmeasured jets, any number of quark and gluon jets, and any angular size R of the jets, as long as R is much smaller than the angular separation between jets. We calculate the jet and soft functions for angularity jet shapes \tau_a to one-loop order (O(alpha_s)) and resum a subset of the large logarithms of \tau_a needed for next-to-leading logarithmic (NLL) accuracy for both cone and kT-type jets. We compare our predictions for the resummed \tau_a distribution of a quark or a gluon jet produced in a 3-jet final state in e+e- annihilation to the output of a Monte Carlo event generator and find that the dependence on a and R is very similar.Comment: 62 pages plus 21 pages of Appendices, 13 figures, uses JHEP3.cls. v2: corrections to finite parts of NLO jet functions, minor changes to plots, clarified discussion of power corrections. v3: Journal version. Introductory sections significantly reorganized for clarity, classification of logarithmic accuracy clarified, results for non-Mercedes-Benz configurations adde

    Pure Samples of Quark and Gluon Jets at the LHC

    Get PDF
    Having pure samples of quark and gluon jets would greatly facilitate the study of jet properties and substructure, with many potential standard model and new physics applications. To this end, we consider multijet and jets+X samples, to determine the purity that can be achieved by simple kinematic cuts leaving reasonable production cross sections. We find, for example, that at the 7 TeV LHC, the pp {\to} {\gamma}+2jets sample can provide 98% pure quark jets with 200 GeV of transverse momentum and a cross section of 5 pb. To get 10 pb of 200 GeV jets with 90% gluon purity, the pp {\to} 3jets sample can be used. b+2jets is also useful for gluons, but only if the b-tagging is very efficient.Comment: 19 pages, 16 figures; v2 section on formally defining quark and gluon jets has been adde

    Factorization and resummation of s-channel single top quark production

    Full text link
    In this paper we study the factorization and resummation of s-channel single top quark production in the Standard Model at both the Tevatron and the LHC. We show that the production cross section in the threshold limit can be factorized into a convolution of hard function, soft function and jet function via soft-collinear-effective-theory (SCET), and resummation can be performed using renormalization group equation in the momentum space resummation formalism. We find that in general, the resummation effects enhance the Next-to-Leading-Order (NLO) cross sections by about 33%-5% at both the Tevatron and the LHC, and significantly reduce the factorization scale dependence of the total cross section at the Tevatron, while at the LHC we find that the factorization scale dependence has not been improved, compared with the NLO results.Comment: 29 pages, 7 figures; version published in JHE

    Feasibility, effectiveness and acceptability of two perturbation-based treadmill training protocols to improve reactive balance in fall-prone older adults (FEATURE): protocol for a pilot randomised controlled trial

    Get PDF
    \ua9 Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.Introduction Perturbation-based balance training (PBT) targets the mechanism of falls (eg, slipping, tripping) to specifically train the recovery actions needed to avoid a fall. This task-specific training has shown great promise as an effective and efficient intervention for fall prevention in older adults. However, knowledge about the dose-response relationship of PBT, as well as its feasibility and acceptability in older adults with increased risk of falling is still limited. Thus, the aim of this study is to compare the effectiveness of two different treadmill PBT protocols for improving reactive balance control in fall-prone older adults, and to evaluate the feasibility and acceptability of these protocols. Methods and analysis The study is designed as a pilot randomised controlled trial with a 6-week intervention and 6-week follow-up period. Thirty-six community-dwelling, fall-prone (Timed Up and Go >12 s, habitual gait speed <1.0 m/s and/or fall history) older adults will be randomised (1:1) to receive six (weeks 1-6) or two treadmill PBT sessions (weeks 1+6) plus four conventional treadmill training sessions (weeks 2-5). Training sessions are conducted 1 7/week for 30 min. Each PBT will include 40 perturbations in anterior-posterior and mediolateral directions. Reactive balance after perturbations in standing (Stepping Threshold Test (STT)) and walking (Dynamic Stepping Threshold Test (DSTT)) will be assessed as the primary outcome for effectiveness. Secondary outcomes are spatiotemporal and kinematic parameters collected during STT, DSTT and PBT, maximum perturbation magnitude for each PBT session, static and dynamic balance, physical capacity, physical activity, concerns with falling and executive functions. Feasibility will be assessed via training adherence, drop-out rate, perturbations actually performed and adverse events; and acceptability via self-designed questionnaire and focus groups. Ethics and dissemination The study has been approved by the Ethics Committee of the Medical Faculty Heidelberg (S-602/2022). Findings will be disseminated through publications in peer-reviewed journals and conference presentations. Trial registration number DRKS00030805

    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data

    Get PDF
    We study Newton type methods for inverse problems described by nonlinear operator equations F(u)=gF(u)=g in Banach spaces where the Newton equations Fâ€Č(un;un+1−un)=g−F(un)F'(u_n;u_{n+1}-u_n) = g-F(u_n) are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss-Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to 0 both for an a priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback-Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performence of the proposed method for these problems is illustrated in numerical examples

    Construction of Lp\mathcal L^p-strong Feller Processes via Dirichlet Forms and Applications to Elliptic Diffusions

    Full text link
    We provide a general construction scheme for Lp\mathcal L^p-strong Feller processes on locally compact separable metric spaces. Starting from a regular Dirichlet form and specified regularity assumptions, we construct an associated semigroup and resolvents of kernels having the Lp\mathcal L^p-strong Feller property. They allow us to construct a process which solves the corresponding martingale problem for all starting points from a known set, namely the set where the regularity assumptions hold. We apply this result to construct elliptic diffusions having locally Lipschitz matrix coefficients and singular drifts on general open sets with absorption at the boundary. In this application elliptic regularity results imply the desired regularity assumptions

    Cross modal perception of body size in domestic dogs (Canis familiaris)

    Get PDF
    While the perception of size-related acoustic variation in animal vocalisations is well documented, little attention has been given to how this information might be integrated with corresponding visual information. Using a cross-modal design, we tested the ability of domestic dogs to match growls resynthesised to be typical of either a large or a small dog to size- matched models. Subjects looked at the size-matched model significantly more often and for a significantly longer duration than at the incorrect model, showing that they have the ability to relate information about body size from the acoustic domain to the appropriate visual category. Our study suggests that the perceptual and cognitive mechanisms at the basis of size assessment in mammals have a multisensory nature, and calls for further investigations of the multimodal processing of size information across animal species

    Diagnostic performance of the Minimal Eating Observation and Nutrition Form - Version II (MEONF-II) and Nutritional Risk Screening 2002 (NRS 2002) among hospital inpatients - a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The usefulness of the nutritional screening tool Minimal Eating Observation and Nutrition Form - Version II (MEONF-II) relative to Nutritional Risk Screening 2002 (NRS 2002) remains untested. Here we attempted to fill this gap by testing the diagnostic performance and user-friendliness of the MEONF-II and the NRS 2002 in relation to the Mini Nutritional Assessment (MNA) among hospital inpatients.</p> <p>Methods</p> <p>Eighty seven hospital inpatients were assessed for nutritional status with the 18-item MNA (considered as the gold standard), and screened with the NRS 2002 and the MEONF-II.</p> <p>Results</p> <p>The MEONF-II sensitivity (0.61), specificity (0.79), and accuracy (0.68) were acceptable. The corresponding figures for NRS 2002 were 0.37, 0.82 and 0.55, respectively. MEONF-II and NRS 2002 took five minutes each to complete. Assessors considered MEONF-II instructions and items to be easy to understand and complete (96-99%), and the items to be relevant (87%). For NRS 2002, the corresponding figures were 75-93% and 79%, respectively.</p> <p>Conclusions</p> <p>The MEONF-II is an easy to use, relatively quick and sensitive screening tool to assess risk of undernutrition among hospital inpatients. With respect to user-friendliness and sensitivity the MEONF-II seems to perform better than the NRS 2002, although larger studies are needed for firm conclusions. The different scoring systems for undernutrition appear to identify overlapping but not identical patient groups. A potential limitation with the study is that the MNA was used as gold standard among patients younger than 65 years.</p

    The Beta Ansatz: A Tale of Two Complex Structures

    Get PDF
    Brane tilings, sometimes called dimer models, are a class of bipartite graphs on a torus which encode the gauge theory data of four-dimensional SCFTs dual to D3-branes probing toric Calabi-Yau threefolds. An efficient way of encoding this information exploits the theory of dessin d’enfants, expressing the structure in terms of a permutation triple, which is in turn related to a Belyi pair, namely a holomorphic map from a torus to a P1 with three marked points. The procedure of a-maximization, in the context of isoradial embeddings of the dimer, also associates a complex structure to the torus, determined by the R-charges in the SCFT, which can be compared with the Belyi complex structure. Algorithms for the explicit construction of the Belyi pairs are described in detail. In the case of orbifolds, these algorithms are related to the construction of covers of elliptic curves, which exploits the properties of Weierstraß elliptic functions. We present a counter example to a previous conjecture identifying the complex structure of the Belyi curve to the complex structure associated with R-charges

    Dark Matter from Minimal Flavor Violation

    Full text link
    We consider theories of flavored dark matter, in which the dark matter particle is part of a multiplet transforming nontrivially under the flavor group of the Standard Model in a manner consistent with the principle of Minimal Flavor Violation (MFV). MFV automatically leads to the stability of the lightest state for a large number of flavor multiplets. If neutral, this particle is an excellent dark matter candidate. Furthermore, MFV implies specific patterns of mass splittings among the flavors of dark matter and governs the structure of the couplings between dark matter and ordinary particles, leading to a rich and predictive cosmology and phenomenology. We present an illustrative phenomenological study of an effective theory of a flavor SU(3)_Q triplet, gauge singlet scalar.Comment: 10 pages, 2 figures; v2: references added, minor changes to collider analysis, conclusions unchange
    • 

    corecore