72 research outputs found

    Differences in body composition between urban and rural Mallards, Anas platyrhynchos

    Get PDF
    Anthropogenic feeding of wildlife provides a valuable opportunity for people to engage with animals, but such feeding has the potential to be detrimental to the species involved. Ducks are frequently fed at urban ponds globally, yet the health impacts of an urban lifestyle for birds are poorly documented. We studied urban and rural Mallards (Anas platyrhynchos) in the Manawatū-Whanganui region (New Zealand). Mallards are opportunistic omnivores that have a phenotypically flexible gastrointestinal system. As urban Mallards consume considerable amounts of low-fibre, high carbohydrate foods via anthropogenic feeding, we predicted that urban Mallards would have smaller gastrointestinal tract organs and higher fat levels than rural ducks. We compared gross body composition of Mallards in a modified environment with high levels of feeding by humans and in rural habitats. We also evaluated other health-associated aspects including fat deposit size, liver fat content and haemosiderin (liver iron deposit) levels. Contrary to predictions, urban birds had larger gizzards and caeca and were no fatter than rural birds; rural birds additionally had larger pectoralis major muscles. These differences are probably associated with broader ecological and behavioural factors than with the provision of anthropogenic food per se [in particular the presence of hard foods (acorns and nuts) for urban birds, and higher flight activity of rural birds]. Longer caeca in urban birds could, however, relate to immunity rather than microbial fermentation of cellulose. Overall, while the nature of the local environment does affect Mallard physiology, no detrimental effects of urban living were evident in this study.Publishe

    Winter habitat use of New Zealand falcons (Falco novaeseelandiae ferox) in an intensively managed pine plantation, central North Island, New Zealand

    Get PDF
    Copyright and source must be acknowledgedPublishe

    Do body condition and plumage during fuelling predict northwards departure dates of Great Knots Calidris tenuirostris from north-west Australia?

    Get PDF
    It is often assumed that strong selection pressures give rise to trade-offs between body condition and time in long-distance migrating birds. Birds that are 'behind schedule' in fuel deposition or moult should delay departure, and this should result in a negative correlation between initial condition and departure date. We tested this hypothesis in the Great Knot Calidris tenuirostris migrating from north-west Australia to eastern Asia en route to Siberia. Great Knot gain mass and moult into breeding plumage before leaving northern Australia in late March and early April, and fly 5400-6000 km to eastern China and Korea. We radiotracked 27 individuals (17 males and ten females) to determine departure dates; 23 migrated and four remained in Australia. We characterized body condition at capture using body mass, predicted pectoral muscle mass (based on ultrasound estimates of the size of the pectoral muscles) and breeding plumage scores. Residual condition indices were uncorrelated, indicating that at the individual level, variation in one fuelling component was not strongly associated with variation in the other components. Birds that did not depart had lower residual body mass and breeding plumage indices than those that did migrate; these four birds may have been subadults. Neither sex, size nor the condition indices explained variation in departure date of migrants. Reasons for this are explored. Departure dates for northward migrating waders indicate that the migration window (span over which birds depart) decreases with proximity to the northern breeding grounds. We suggest that migration schedules become tighter as birds get nearer to the breeding grounds. Thus the lack of a relationship between condition and departure date in Great Knots may reflect the fact that the departure episode under study is the first one in sequence and is still 4-8 weeks before breeding

    Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivity

    Get PDF
    Pre-flight fuelling rates in free-living red knots Calidris canutus, a specialized long-distance migrating shorebird species, are positively correlated with latitude and negatively with temperature. The single published hypothesis to explain these relationships is the heat load hypothesis that states that in warm climates red knots may overheat during fuelling. To limit endogenous heat production (measurable as basal metabolic rate BMR), birds would minimize the growth of digestive organs at a time they need. This hypothesis makes the implicit assumption that BMR is mainly driven by digestive organ size variation during pre-flight fuelling. To test the validity of this assumption, we fed captive knots with trout pellet food, a diet previously shown to quickly lead to atrophied digestive organs, during a fuelling episode. Birds were exposed to two thermal treatments (6 and 24°C) previously shown to generate different fuelling rates in knots. We made two predictions. First, easily digested trout pellet food rather than hard-shelled prey removes the heat contribution of the gut and would therefore eliminate an ambient temperature effect on fuelling rate. Second, if digestive organs were the main contributors to variations in BMR but did not change in size during fuelling, we would expect no or little change in BMR in birds fed ad libitum with trout pellets. We show that cold-acclimated birds maintained higher body mass and food intake (8 and 51%) than warm-acclimated birds. Air temperature had no effect on fuelling rate, timing of fuelling, timing of peak body mass or BMR. During fuelling, average body mass increased by 32% while average BMR increased by 15% at peak of mass and 26% by the end of the experiment. Our results show that the small digestive organs characteristic of a trout pellet diet did not prevent BMR from increasing during premigratory fuelling. Our results are not consistent with the heat load hypothesis as currently formulated

    Very rapid long-distance sea crossing by a migratory bird

    Get PDF
    Landbirds undertaking within-continent migrations have the possibility to stop en route, but most long-distance migrants must also undertake large non-stop sea crossings, the length of which can vary greatly. For shorebirds migrating from Iceland to West Africa, the shortest route would involve one of the longest continuous sea crossings while alternative, mostly overland, routes are available. Using geolocators to track the migration of Icelandic whimbrels (Numenius phaeopus), we show that they can complete a round-trip of 11,000 km making two non-stop sea crossings and flying at speeds of up to 24 m s-1; the fastest recorded for shorebirds flying over the ocean. Although wind support could reduce flight energetic costs, whimbrels faced headwinds up to twice their ground speed, indicating that unfavourable and potentially fatal weather conditions are not uncommon. Such apparently high risk migrations might be more common than previously thought, with potential fitness gains outweighing the costs

    Environment, Migratory Tendency, Phylogeny and Basal Metabolic Rate in Birds

    Get PDF
    Basal metabolic rate (BMR) represents the minimum maintenance energy requirement of an endotherm and has far-reaching consequences for interactions between animals and their environments. Avian BMR exhibits considerable variation that is independent of body mass. Some long-distance migrants have been found to exhibit particularly high BMR, traditionally interpreted as being related to the energetic demands of long-distance migration. Here we use a global dataset to evaluate differences in BMR between migrants and non-migrants, and to examine the effects of environmental variables. The BMR of migrant species is significantly higher than that of non-migrants. Intriguingly, while the elevated BMR of migrants on their breeding grounds may reflect the metabolic machinery required for long-distance movements, an alternative (and statistically stronger) explanation is their occupation of predominantly cold high-latitude breeding areas. Among several environmental predictors, average annual temperature has the strongest effect on BMR, with a 50% reduction associated with a 20°C gradient. The negative effects of temperature variables on BMR hold separately for migrants and non-migrants and are not due their different climatic associations. BMR in migrants shows a much lower degree of phylogenetic inertia. Our findings indicate that migratory tendency need not necessarily be invoked to explain the higher BMR of migrants. A weaker phylogenetic signal observed in migrants supports the notion of strong phenotypic flexibility in this group which facilitates migration-related BMR adjustments that occur above and beyond environmental conditions. In contrast to the findings of previous analyses of mammalian BMR, primary productivity, aridity or precipitation variability do not appear to be important environmental correlates of avian BMR. The strong effects of temperature-related variables and varying phylogenetic effects reiterate the importance of addressing both broad-scale and individual-scale variation for understanding the determinants of BMR

    Energy expenditure during flight in relation to body mass: effects of natural increases in mass and artificial load in Rose Coloured Starlings

    Get PDF
    Rose Coloured Starlings (Sturnus roseus) flew repeatedly for several hours in a wind tunnel while undergoing spontaneous variation in body mass. The treatments were as follows: flying unrestrained (U), with a control harness of 1.2% of their body mass (C), or with a harness of 7.4% of their body mass, which was either applied immediately before the flight (LS) or at least 9 days in advance (LL). Energy expenditure during flight (ef in W) was measured with the Doubly Labelled Water method. Flight costs in LS and LL were not significantly different and therefore were pooled (L). The harness itself did not affect ef, i.e. U and C flights were not different. ef was allometrically related with body mass m (in g). The slopes were not significantly different between the treatments, but ef was increased by 5.4% in L compared to C flights (log10(ef) = 0.050 + 0.47 × log10(m) for C, and log10(ef) = 0.073 + 0.47 × log10(m) for L). The difference in ef between C, LS and LL was best explained by taking the transported mass mtransp (in g) instead of m into account (log10(ef) = −0.08 + 0.54 × log10(mtransp)). Flight costs increased to a lesser extent than expected from interspecific allometric comparison or aerodynamic theory, regardless of whether the increase in mass occurred naturally or artificially. We did not observe an effect of treatment on breast muscle size and wingbeat frequency. We propose that the relatively low costs at a high mass are rather a consequence of immediate adjustments in physiology and/or flight behaviour than of long-term adaptations

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe
    corecore