1,874 research outputs found

    Quantum Dynamics of the Taub Universe in a Generalized Uncertainty Principle framework

    Full text link
    The implications of a Generalized Uncertainty Principle on the Taub cosmological model are investigated. The model is studied in the ADM reduction of the dynamics and therefore a time variable is ruled out. Such a variable is quantized in a canonical way and the only physical degree of freedom of the system (related to the Universe anisotropy) is quantized by means of a modified Heisenberg algebra. The analysis is performed at both classical and quantum level. In particular, at quantum level, the motion of wave packets is investigated. The two main results obtained are as follows. i) The classical singularity is probabilistically suppressed. The Universe exhibits a stationary behavior and the probability amplitude is peaked in a determinate region. ii) The GUP wave packets provide the right behavior in the establishment of a quasi-isotropic configuration for the Universe.Comment: 10 pages, 4 figures; v2: section added, to appear on PR

    Poor electronic screening in lightly doped Mott insulators observed with scanning tunneling microscopy

    Get PDF
    The effective Mott gap measured by scanning tunneling microscopy (STM) in the lightly doped Mott insulator (Sr1−xLax)2IrO4(\rm{Sr}_{1 -x}\rm{La}_x)_2\rm{IrO}_4 differs greatly from values reported by photoemission and optical experiments. Here, we show that this is a consequence of the poor electronic screening of the tip-induced electric field in this material. Such effects are well known from STM experiments on semiconductors, and go under the name of tip-induced band bending (TIBB). We show that this phenomenon also exists in the lightly doped Mott insulator (Sr1−xLax)2IrO4(\rm{Sr}_{1 -x}\rm{La}_x)_2\rm{IrO}_4 and that, at doping concentrations of x≤4%x\leq 4 \%, it causes the measured energy gap in the sample density of states to be bigger than the one measured with other techniques. We develop a model able to retrieve the intrinsic energy gap leading to a value which is in rough agreement with other experiments, bridging the apparent contradiction. At doping x≈5%x \approx 5 \% we further observe circular features in the conductance layers that point to the emergence of a significant density of free carriers in this doping range, and to the presence of a small concentration of donor atoms. We illustrate the importance of considering the presence of TIBB when doing STM experiments on correlated-electron systems and discuss the similarities and differences between STM measurements on semiconductors and lightly doped Mott insulators.Comment: 9 pages, 5 figure

    Nanofabricated tips for device-based scanning tunneling microscopy

    Full text link
    We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical circuits. We describe a new fabrication method to create a defined apex on a silicon chip and experimentally demonstrate the high performance of the smart tips, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. We further present an overview of possible applications

    Generalized Uncertainty Principle and the Ramsauer-Townsend Effect

    Full text link
    The scattering cross section of electrons in noble gas atoms exhibits a minimum value at electron energies of approximately 1eV. This is the Ramsauer-Townsend effect. In this letter, we study the Ramsauer-Townsend effect in the framework of the Generalized Uncertainty Principle.Comment: 11 pages, 3 figure

    Spatial orientation of social caterpillars is influenced by polarized light

    Get PDF
    Processionary caterpillars of Thaumetopoea pityocampa (in Europe) and Ochrogaster lunifer (in Australia) (Lepidoptera: Notodontidae) form single files of larvae crawling head-to-tail when moving to feeding and pupation sites. We investigated if the processions are guided by polarization vision. The heading orientation of processions could be manipulated with linear polarizing filters held above the leading caterpillar. Exposure to changes in the angle of polarization around the caterpillars resulted in corresponding changes in heading angles. Anatomical analysis indicated specializations for polarization vision of stemma I in both species. Stemma I has a rhabdom with orthogonal and aligned microvilli, and an opaque and rugged surface, which are optimizations for skylight polarization vision, similar to the dorsal rim of adult insects. Stemmata II-VI have a smooth and shiny surface and lobed rhabdoms with non-orthogonal and non-aligned microvilli; they are thus optimized for general vision with minimal polarization sensitivity. Behavioural and anatomical evidence reveal that polarized light cues are important for larval orientation and can be robustly detected with a simple visual system

    40. The gas-phase ammoxidation of n-hexane to unsaturated C6 dinitriles, intermediates for hexamethylenediamine synthesis

    Get PDF
    This paper reports about an investigation on the catalytic gas-phase ammoxidation of n-hexane aimed at the production of 1,6-C6 dinitriles, precursors for the synthesis of hexamethylenediamine. Catalysts tested were those also active and selective in the ammoxidation of propane to acrylonitrile: rutile-type V/Sb and Sn/V/Nb/Sb mixed oxides. Several N-containing compounds formed; however, the selectivity to cyano-containing aliphatic linear C6 compounds was low, due to the relevant contribution of side reactions such as combustion, cracking and formation of heavy compounds.INGLES
    • …
    corecore