3,488 research outputs found

    Dynamic reconfiguration of human brain networks during learning

    Get PDF
    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Comment: Main Text: 19 pages, 4 figures Supplementary Materials: 34 pages, 4 figures, 3 table

    Robust Detection of Dynamic Community Structure in Networks

    Get PDF
    We describe techniques for the robust detection of community structure in some classes of time-dependent networks. Specifically, we consider the use of statistical null models for facilitating the principled identification of structural modules in semi-decomposable systems. Null models play an important role both in the optimization of quality functions such as modularity and in the subsequent assessment of the statistical validity of identified community structure. We examine the sensitivity of such methods to model parameters and show how comparisons to null models can help identify system scales. By considering a large number of optimizations, we quantify the variance of network diagnostics over optimizations (`optimization variance') and over randomizations of network structure (`randomization variance'). Because the modularity quality function typically has a large number of nearly-degenerate local optima for networks constructed using real data, we develop a method to construct representative partitions that uses a null model to correct for statistical noise in sets of partitions. To illustrate our results, we employ ensembles of time-dependent networks extracted from both nonlinear oscillators and empirical neuroscience data.Comment: 18 pages, 11 figure

    Massless Metric Preheating

    Get PDF
    Can super-Hubble metric perturbations be amplified exponentially during preheating ? Yes. An analytical existence proof is provided by exploiting the conformal properties of massless inflationary models. The traditional conserved quantity \zeta is non-conserved in many regions of parameter space. We include backreaction through the homogeneous parts of the inflaton and preheating fields and discuss the role of initial conditions on the post-preheating power-spectrum. Maximum field variances are strongly underestimated if metric perturbations are ignored. We illustrate this in the case of strong self-interaction of the decay products. Without metric perturbations, preheating in this case is very inefficient. However, metric perturbations increase the maximum field variances and give alternative channels for the resonance to proceed. This implies that metric perturbations can have a large impact on calculations of relic abundances of particles produced during preheating.Comment: 8 pages, 4 colour figures. Version to appear in Phys. Rev. D. Contains substantial new analysis of the ranges of parameter space for which large changes to the inflation-produced power spectrum are expecte

    Spectral mapping of brain functional connectivity from diffusion imaging.

    Get PDF
    Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole-brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems

    A new twist to preheating

    Full text link
    Metric perturbations typically strengthen field resonances during preheating. In contrast we present a model in which the super-Hubble field resonances are completely {\em suppressed} when metric perturbations are included. The model is the nonminimal Fakir-Unruh scenario which is exactly solvable in the long-wavelength limit when metric perturbations are included, but exhibits exponential growth of super-Hubble modes in their absence. This gravitationally enhanced integrability is exceptional, both for its rarity and for the power with which it illustrates the importance of including metric perturbations in consistent studies of preheating. We conjecture a no-go result - there exists no {\em single-field} model with growth of cosmologically-relevant metric perturbations during preheating.Comment: 6 pages, 3 figures, Version to appear in Physical Review

    Preheating of the nonminimally coupled inflaton field

    Get PDF
    We investigate preheating of an inflaton field ϕ\phi coupled nonminimally to a spacetime curvature. In the case of a self-coupling inflaton potential V(ϕ)=λϕ4/4V(\phi)=\lambda \phi^4/4, the dynamics of preheating changes by the effect of the negative ξ\xi. We find that the nonminimal coupling works in two ways. First, since the initial value of inflaton field for reheating becomes smaller with the increase of ∣ξ∣|\xi|, the evolution of the inflaton quanta is delayed for fixed λ\lambda. Second, the oscillation of the inflaton field is modified and the nonadiabatic change around ϕ=0\phi=0 occurs significantly. That makes the resonant band of the fluctuation field wider. Especially for strong coupling regimes ∣ξ∣≫1|\xi| \gg 1, the growth of the inflaton flutuation is dominated by the resonance due to the nonminimal coupling, which leads to the significant enhancement of low momentum modes. Although the final variance of the inflaton fluctuation does notchange significantly compared with the minimally coupled case, we have found that the energy transfer from the homogeneous inflaton to created particles efficiently occurs for ξ<−60\xi<-60.Comment: 13pages, 11figure
    • …
    corecore