172 research outputs found

    Microstructure and mechanical properties of an advanced Ag-microalloyed aluminum crossover alloy tailored for wire-arc directed energy deposition

    Get PDF
    The implementation of wire-arc directed energy deposition requires the development of novel, process-adapted, high-performance aluminum alloys. Conventional high-strength alloys are, however, difficult to process as they are prone to hot-cracking. Crossover alloys based on Al-Mg-Zn combine good processability with good mechanical properties following artificial aging. Here, we present an effort to further improve the mechanical properties of Al-Mg-Zn crossover alloys using Ag microalloying. No cracks and few porosities were observed in the samples. The microstructure is dominated by fine and globular grains with a grain size ˜ 26.6 µm. The grain structure is essentially free of texture and contains fine microsegregation zones with ˜ 3–5 µm thickness of segregation seams. Upon heat treatment these microsegregation zones are dissolved and T-phase precipitates are formed as clarified by diffraction experiments. This precipitation reaction results in a microhardness of ˜ 155 HV0.1, a yield strength of 391.3 MPa and 418.6 MPa, an ultimate tensile strength of 452.7 MPa and 529.4 MPa and a fracture strain of 3.4% and 4.4% in transversal and in longitudinal directions, respectively. The gained results suggest that highly loaded structures can be manufactured by wire-arc directed energy deposition using the newly developed aluminum crossover alloy.Peer ReviewedPostprint (published version

    Interface-Mediated Twinning-Induced Plasticity in a Fine Hexagonal Microstructure Generated by Additive Manufacturing

    Get PDF
    The grain size is a determinant microstructural feature to enable the activation of deformation twinning in hexagonal close-packed (hcp) metals. Although deformation twinning is one of the most effective mechanisms for improving the strength–ductility trade-off of structural alloys, its activation is reduced with decreasing grain size. This work reports the discovery of the activation of deformation twinning in a fine-grained hcp microstructure by introducing ductile body-centered cubic (bcc) nano-layer interfaces. The fast solidification and cooling conditions of laser-based additive manufacturing are exploited to obtain a fine microstructure that, coupled with an intensified intrinsic heat treatment, permits to generate the bcc nano-layers. In situ high-energy synchrotron X-ray diffraction allows tracking the activation and evolution of mechanical twinning in real-time. The findings obtained show the potential of ductile nano-layering for the novel design of hcp damage tolerant materials with improved life spans.Fil: Barriobero Vila, Pere. German Aerospace Center.; AlemaniaFil: Vallejos, Juan Manuel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Gussone, Joachim. German Aerospace Center.; AlemaniaFil: Haubrich, Jan. German Aerospace Center.; AlemaniaFil: Kelm, Klemens. German Aerospace Center.; AlemaniaFil: Stark, Andreas. German Aerospace Center.; AlemaniaFil: Schell, Norbert. German Aerospace Center.; AlemaniaFil: Requena, Guillermo. German Aerospace Center.; Alemani

    The Influence of Iron in Minimizing the Microstructural Anisotropy of Ti-6Al-4V Produced by Laser Powder-Bed Fusion

    Get PDF
    There remains a significant challenge in adapting alloys for metal based Additive Manufacturing (AM). Adjusting alloy composition to suit the process, particularly under regimes close to industrial practice, is therefore a potential solution. With the aim of designing new Ti-based alloys of superior mechanical properties for use in laser powder-bed fusion, this research investigates the influence of Fe on the microstructural development of Ti-6Al-4V. The operating mechanisms that govern the relationship between the alloy composition (and Fe in particular) and the grain size are explored using EBSD, TEM and in-situ high-energy synchrotron X-ray diffraction. It was found that Fe additions up to 3 wt% lead to a progressive refinement of the microstructure. By exploiting the cooling rates of AM and suitable amount of Fe additions, it was possible to obtain microstructures that can be optimized by heat treatment without obvious precipitation of detrimental brittle phases. The resulting microstructure consists of a desirable and well studied fully laminar α+ β structure in refined prior-β grains

    Sequence of phase transformations in metastable ß Zr–12Nb alloy studied in situ by HEXRD and complementary techniques

    Get PDF
    Phase transformations in a metastable beta Zr–12Nb alloy were investigated by high-energy X-ray diffraction (HEXRD) measured simultaneously with thermal expansion in situ during linear heating from room temperature to 800 °C. Complementary in-situ methods of electrical resistance and differential scanning calorimetry, which were performed using the same heating conditions as in the HEXRD experiment, provided additional information on the transformation sequence occurring in the Zr–12Nb alloy. Two bcc phases with a different lattice parameter, ßZr and ßNb, were observed in the investigated temperature range and identified using the phase diagram of the Zr–Nb system. In the initial solution-treated condition, metastable ßZr phase and athermal ¿ particles are present in the material. At about 300 °C, Nb-rich ßNb phase starts to form in the material and the original ßZr phase gradually disappears. Ex-situ observations of the microstructure using transmission electron microscopy revealed a cuboidal shape of the ¿ particles, which is related to a relatively large misfit between the ¿ and ß phases. At 560 °C, ¿ solvus was observed, identified by an abrupt dissolution of ¿ particles which was followed by growth of the a phase.Peer ReviewedPostprint (published version

    The influence of iron in minimizing the microstructural anisotropy of Ti-6Al-4V produced by laser powder-bed fusion

    Get PDF
    There remains a significant challenge in adapting alloys for metal-based additive manufacturing (AM). Adjusting alloy composition to suit the process, particularly under regimes close to industrial practice, is therefore a potential solution. With the aim of designing new Ti-based alloys of superior mechanical properties for use in laser powder-bed fusion, this research investigates the influence of Fe on the microstructural development of Ti-6Al-4V. The operating mechanisms that govern the relationship between the alloy composition (and Fe in particular) and the grain size are explored using EBSD, TEM, and in situ high-energy synchrotron X-ray diffraction. It was found that Fe additions up to 3 wt pct lead to a progressive refinement of the microstructure. By exploiting the cooling rates of AM and suitable amount of Fe additions, it was possible to obtain microstructures that can be optimized by heat treatment without obvious precipitation of detrimental brittle phases. The resulting microstructure consists of a desirable and well-studied fully laminar α + β structure in refined prior-β grains

    Simulations of precipitation kinetics in Ti2AlNb-based multiphase alloys synthesized by laser powder bed fusion

    Get PDF
    High-temperature Ti2AlNb-based alloys are structural candidate materials for weight reduction in engines and aircraft. The precipitation kinetics underlying the complex microstructure observed in Ti2AlNb-based alloys was investigated using computational tools for simulating diffusion controlled precipitation processes. The microstructure of alloys processed by laser powder bed fusion (LPBF) was investigated using electron microscopy. The phase fractions were determined by high-energy X-ray diffraction during in situ annealing of the samples. Precipitation reaction models were used as implemented in the Thermo-Calc PRISMA software in combination with a well-developed thermodynamic database, Thermo-Calc Software TCTI/Ti-alloys database version 3. In particular the volume fractions of strengthening phases were quantified during the simulations and final phase fractions tailored as a function of temperature and alloy composition. Different nucleation and growth mechanisms were simulated and correlated with experimental observations at relative early stages of the precipitation process. Moreover, we identify models’ limitations and key model parameters through a sensitivity analysis of the adjustable parameters using the parametric optimization software Optislang
    corecore