154 research outputs found

    Collective dynamics in noble-gas and other very simple classical fluids

    No full text
    Rare gases and their liquids are the simplest systems to study for accurate investigations of the collective dynamics of fluid matter. Much work has been done using different spectroscopic techniques, moleculardynamics simulations, and theoretical developments, in order to gain insight into the microscopic processes involved, in particular, in the propagation of acoustic excitations in gases and liquids. Here we briefly review the interpretation schemes currently applied to the characterization of such excitations, and recall a few results obtained from the analysis of rare-gas fluids and other very simple systems.Iнертнi гази та їхнi рiдини є найпростiшими системами для точних дослiджень колективної динамiки плинiв. Було пророблено значну роботу з використанням рiзноманiтних спектроскопiчних методик, моделювання методом молекулярної динамiки та теоретичних розробок для розумiння мiкроскопiчних процесiв, що приймають участь у поширеннi звукових збуджень у газах та рiдинах. Ми подаємо короткий огляд iнтерпретацiйних схем, що застосовуються для опису таких збуджень, та нагадуємо декiлька результатiв, отриманих iз аналiзу плинiв iнертних газiв та iнших дуже простих систем

    Assessment of Streptococcus pneumoniae pilus islet-1 prevalence in carried and transmitted isolates from mother–infant pairs on the Thailand–Burma border

    Get PDF
    AbstractStreptococcus pneumoniae pilus islet-1 (PI–1)-encoded pilus enhances in vitro adhesion to the respiratory epithelium and may contribute to pneumococcal nasopharyngeal colonization and transmission. The pilus subunits are regarded as potential protein vaccine candidates. In this study, we sought to determine PI–1 prevalence in carried pneumococcal isolates and explore its relationship with transmissibility or carriage duration. We studied 896 pneumococcal isolates collected during a longitudinal carriage study that included monthly nasopharyngeal swabbing of 234 infants and their mothers between the ages of 1 and 24 months. These were cultured according to the WHO pneumococcal carriage detection protocol. PI-1 PCR and genotyping by multilocus sequence typing were performed on isolates chosen according to specific carriage and transmission definitions. Overall, 35.2% of the isolates were PI-1-positive, but PI-1 presence was restricted to ten of the 34 serotypes studied and was most frequently associated with serotypes 19F and 23F; 47.5% of transmitted and 43.3% of non-transmitted isolates were PI-1-positive (OR 1.2; 95% CI 0.8-1.7; p 0.4). The duration of first-ever infant pneumococcal carriage was significantly longer with PI-1-positive organisms, but this difference was not significant at the individual serotype level. In conclusion, PI-1 is commonly found in pneumococcal carriage isolates, but does not appear to be associated with pneumococcal transmissibility or carriage duration

    Implementation of the Hierarchical Reference Theory for simple one-component fluids

    Full text link
    Combining renormalization group theoretical ideas with the integral equation approach to fluid structure and thermodynamics, the Hierarchical Reference Theory is known to be successful even in the vicinity of the critical point and for sub-critical temperatures. We here present a software package independent of earlier programs for the application of this theory to simple fluids composed of particles interacting via spherically symmetrical pair potentials, restricting ourselves to hard sphere reference systems. Using the hard-core Yukawa potential with z=1.8/sigma for illustration, we discuss our implementation and the results it yields, paying special attention to the core condition and emphasizing the decoupling assumption's role.Comment: RevTeX, 16 pages, 2 figures. Minor changes, published versio

    Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group

    Full text link
    The Hierarchical Reference Theory (HRT) of fluids is a general framework for the description of phase transitions in microscopic models of classical and quantum statistical physics. The foundations of HRT are briefly reviewed in a self-consistent formulation which includes both the original sharp cut-off procedure and the smooth cut-off implementation, which has been recently investigated. The critical properties of HRT are summarized, together with the behavior of the theory at first order phase transitions. However, the emphasis of this presentation is on the close relationship between HRT and non perturbative renormalization group methods, as well as on recent generalizations of HRT to microscopic models of interest in soft matter and quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic

    RrgA is a pilus-associated adhesin in Streptococcus pneumoniae

    Get PDF
    Adherence to host cells is important in microbial colonization of a mucosal surface, and Streptococcus pneumoniae adherence was significantly enhanced by expression of an extracellular pilus composed of three subunits, RrgA, RrgB and RrgC. We sought to determine which subunit(s) confers adherence. Bacteria deficient in RrgA are significantly less adherent than wild-type organisms, while overexpression of RrgA enhances adherence. Recombinant monomeric RrgA binds to respiratory cells, as does RrgC with less affinity, and pre-incubation of epithelial cells with RrgA reduces adherence of wild-type piliated pneumococci. Non-adherent RrgA-negative, RrgB- and RrgC-positive organisms produce pili, suggesting that pilus-mediated adherence is due to expression of RrgA, rather than the pilus backbone itself. In contrast, RrgA-positive strains with disrupted rrgB and rrgC genes exhibit wild-type adherence despite failure to produce pili by Western blot or immunoelectron microscopy. The density of bacteria colonizing the upper respiratory tract of mice inoculated with piliated RrgA-negative pneumococci was significantly less compared with wild-type; in contrast, non-piliated pneumococci expressing non-polymeric RrgA had similar numbers of bacteria in the nasopharynx as piliated wild-type bacteria. These data suggest that RrgA is central in pilus-mediated adherence and disease, even in the absence of polymeric pilus production

    Leptospirosis-associated Severe Pulmonary Hemorrhagic Syndrome, Salvador, Brazil

    Get PDF
    We report the emergence of leptospirosis-associated severe pulmonary hemorrhagic syndrome (SPHS) in slum communities in Salvador, Brazil. Although active surveillance did not identify SPHS before 2003, 47 cases were identified from 2003 through 2005; the case-fatality rate was 74%. By 2005, SPHS caused 55% of the deaths due to leptospirosis

    Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae

    Get PDF
    Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA), the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (Vir)B/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail

    The Streptococcus pneumoniae Pilus-1 Displays a Biphasic Expression Pattern

    Get PDF
    The Streptococcus pneumoniae pilus-1 is encoded by pilus islet 1 (PI-1), which has three clonal variants (clade I, II and III) and is present in about 30% of clinical pneumococcal isolates. In vitro and in vivo assays have demonstrated that pilus-1 is involved in attachment to epithelial cells and virulence, as well as protection in mouse models of infection. Several reports suggest that pilus-1 expression is tightly regulated and involves the interplay of numerous genetic regulators, including the PI-1 positive regulator RlrA. In this report we provide evidence that pilus expression, when analyzed at the single-cell level in PI-1 positive strains, is biphasic. In fact, the strains present two phenotypically different sub-populations of bacteria, one that expresses the pilus, while the other does not. The proportions of these two phenotypes are variable among the strains tested and are not influenced by genotype, serotype, growth conditions, colony morphology or by the presence of antibodies directed toward the pilus components. Two sub-populations, enriched in pilus expressing or not expressing bacteria were obtained by means of colony selection and immuno-detection methods for five strains. PI-1 sequencing in the two sub-populations revealed the absence of mutations, thus indicating that the biphasic expression observed is not due to a genetic modification within PI-1. Microarray expression profile and western blot analyses on whole bacterial lysates performed comparing the two enriched sub-populations, revealed that pilus expression is regulated at the transcriptional level (on/off regulation), and that there are no other genes, in addition to those encoded by PI-1, concurrently regulated across the strains tested. Finally, we provide evidence that the over-expression of the RrlA positive regulator is sufficient to induce pilus expression in pilus-1 negative bacteria. Overall, the data presented here suggest that the observed biphasic pilus expression phenotype could be an example of bistability in pneumococcus

    Supramolecular Organization of the Repetitive Backbone Unit of the Streptococcus pneumoniae Pilus

    Get PDF
    Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility
    corecore