33 research outputs found

    The spectral composition of the earth's infrared radiation into space according to the measurement results from earth's artificial satellites

    Get PDF
    Spectral composition of earth radiation determined using monochromators installed on board Cosmos series earth satellite

    Biological properties of domestic strain vRub-Ant of rubella virus

    Get PDF
    Introduction. Rubella is a mild infectious disease affecting mainly children and is caused by the rubella virus, part of the Matonoviridae family, genus Rubivirus. Rubella causes congenital rubella syndrome (CRS) and is the main cause of developmental abnormalities, especially blindness and deafness. There is no specific treatment for rubella and CRS. In order to avoid possible complications from rubella infection, a live attenuated rubella vaccine based on the foreign strain of Wistar RA 27/3 rubella virus is used. However, the actual, more effective and preferred vaccine strain the rubella virus for the Russian Federation is considered to be a viral strain of rubella circulating on its territory. The aim of the study was to study the biological properties of the developed domestic cold-adapted strain vRub-Ant circulating in the territory of the Russian Federation. Materials and methods. Following cell cultures were used in the study human embryo lung diploid cell strain LECH-3, transferable cell line from embryonic kidney cells of green monkeys Vero CCL-81 and Vero ECC, human mesenchymal stem cells, human peripheral blood mononuclear cells (PBMC). Cell cultures were grown on a DMEM/F12 nutrient medium with the addition of 5% fetal bovine serum. Swabs from the pharynx and nasal passages from a child with rubella were used as clinical virus-containing material. Monoclonal anti-idiotypic antibodies m(anti-ID)Ab were used to assess the expression level of alpha/beta and gamma interferon receptors (/ and IFN-R)Ab, imitating the biological effects of alpha/beta and gamma interferons (/ and IFN) of humans. The cultural, virological, immunochemical and serological research methods were applied in the study. Results. Attenuation of the vRub-Ant clinical isolate of rubella virus was carried out for 20 consecutive passages on LECH-3 diploid cells at a reduced temperature of 30C. The main biological markers of attenuation were determined to be ts and ca phenotypes. The avirulence of the attenuated viral strain (att-phenotype) was assessed by the level of expression of / and IFN-R. A lower level of / and IFN-R expression was found on the membranes of human PBMC induced by the vaccine strain vRub-Ant in comparison with the parent wild variant of the rubella virus. This trait,the att phenotype, is characteristic of attenuated viral strains. It has been shown that the vaccine strain vRub-Ant has lost neurotropism and was unable to bind to the membrane receptors of the brain (MRB) of guinea pig embryos, unlike its parent rubella virus strain. The high immunogenicity of the domestic cold-adapted strain vRub-Ant was confirmed by high titers of neutralizing rubella antibodies observed in guinea pigs immunized subcutaneously with one vaccination dose of the virus. Conclusion. A domestic attenuated vaccine strain vRub-Ant of the rubella virus that has the main biological markers of attenuation (ts-ca and att phenotypes) has been developed. The vaccine strain vRub-Ant induces a high levels of neutralizing antibodies in guinea pigs following the immunization with a single vaccination dose of the vaccine. The viral strain vRub-Ant has lost its tropism to the MRB of guinea pig embryos, unlike its parent variant

    Virus-inhibitory activity of the antigen complex of opportunistic pathogenic bacteria against SARS-CoV-2

    Get PDF
    Introduction. The antigen complex of opportunistic pathogenic bacteria (ACOPB) has a protective effect against avian influenza viruses, herpes virus type 2, and other viruses that cause acute respiratory viral infections. In the context of the COVID-19 pandemic, an important task is to find out whether ACOPB has a protective effect against SARS-CoV-2. The purpose of the study was to evaluate in vitro the ACOPB virus-inhibitory activity against the Dubrovka laboratory strain of SARS-CoV-2. Materials and methods. The study was performed using Vero cell line CCL-81, human peripheral blood mononuclear cells (PBMCs), mouse monoclonal anti-idiotypic antibodies structurally mimicking biological effects of human interferons (IFNs), the Dubrovka laboratory strain of SARS-CoV-2. The infectivity of the virus was assessed by two methods: by virus titration using cell cultures and the limiting dilution method when the results are assessed by a cytopathic effect; the second method was a plaque assay. The in vitro virus inhibition test was performed using the cell culture susceptible to SARS-CoV-2; the mixture containing a specific dose of the virus and a two-fold dilution of ACOPB was transferred to the cell culture after the ACOPB medication had interacted with the virus at 4C for 2 hours. The ACOPB virus-inhibitory activity against SARS-CoV-2 was assessed by the functional activity of / and IFN receptors (RIFN) in human PBMCs induced in vitro by ACOPB and the ACOPB mixture with the specific dose of SARS-CoV-2. The RIFN expression level was measured by the indirect membrane immunofluorescence test. Results. Hemagglutination assay using chicken, mouse, guinea pig, and human red blood cells was performed for detection of the SARS-CoV-2 inhibitory protein. The lysate of Vero CCL-81 cells infected with SARS-CoV-2 Dubrovka demonstrated the highest hemagglutination activity with guinea pig red blood cells and low titers of hemagglutination in the virus-containing fluid. The virus inhibition test in the Vero CCL-81 cell culture demonstrated that ACOPB inhibited 10 doses of SARS-CoV-2 Dubrovka with the titer 1 : 32, providing 100% protection of the cell culture for 8 days (the monitoring period). ACOPB induced / and RIFN expression on membranes of human PBMCs in in vitro cultures and decreased RIFN / and expression after its interaction with SARS-CoV-2 Dubrovka. Conclusion. The experimental studies including the virus inhibition test in the cell culture susceptible to SARS-CoV-2 Dubrovka and the indirect membrane immunofluorescence assay using monoclonal anti-idiotypic antibodies mimicking IFN-like properties demonstrated that ACOPB had both an immunomodulatory and a virus-inhibitory effect

    Механизмы нарушений эритропоэза при сепсисе

    Get PDF
    Objective: to determine the mechanisms responsible for impairments in the space-time organization of erythropoiesis (SPOE) in experimental sepsis. Materials and methods. The diurnal changes in the titer of erythropoietin, the content of red blood cells, and their distribution by volume, the peripheral blood levels of hemoglobin and reticulocytes, life span, the production of erythrocytes, malonic dialdehyde (MDA), the statokinetic erythroid cell index, and bone marrow 59Fe incorporation were studied in 240 Wistar rats with multimicroial sepsis and 80 intact animals. Results. In sepsis, SPOE desynchronism was found to be due to increases in MDA and in the population of microcytes with shorter life span. The maximum duration was increased for erythropoiesis and decreased for erythrocytic production with the decreased peripheral blood level of ery-throcytes and hemoglobin. The progressive rise in the titer of erythropoiesis was accompanied by decreases in the statoki-netic index and bone marrow 59Fe incorporation with a simultaneous increase in the population of microcytes and with a reduction in the life span of erythrocytes. Conclusion. Endotoxicosis was established to play the leading role in the mechanisms of SPOE desynchronism. Activation of lipid peroxidation in the red blood cell membranes enhances their rigidity, by initiating the development of anemia and microcirculatory disorders. The decreases in erythrocytic production, statokinetic index, and bone marrow 59Fe incorporation with an inadequately high titer of erythropoiesis suggest the inhibition of ery-thropoietin-dependent processes in the target cells, which promotes the progression of septic anemia. Key words: bio-rhythms, erythropoiesis, erythropoietin, anemia, sepsis.Цель исследования — определить механизмы нарушения пространственно-временной организации эритропоэза при экспериментальном сепсисе. Материал и методы. У 240 крыс Вистар с полимикробным сепсисом и 80 интактных животных изучена суточная динамика титра эритропоэтина, содержания эритроцитов и их распределения по объему, гемоглобина и ретикулоцитов в периферической крови, продолжительности жизни и продукции эритроцитов, малонового диальдегида, статмокинетического индекса эритроидных клеток и инкорпорации Fe59 костным мозгом. Обнаружено, что при сепсисе десинхроноз ПВОЭ обусловлен ростом МДА и популяции микроцитов с укороченной продолжительностью жизни. Продолжительность максимума для эритропоэза увеличена, для продукции эритроцитов — сокращена на фоне снижения уровня эритроцитов и гемоглобина в периферической крови. Прогрессирующий рост титра эритро-поэза сопровождается снижением статмокинетического индекса и инкорпорации Fe59 костным мозгом при одновременном увеличении популяции микроцитов и сокращении продолжительности жизни эритроцитов. Заключение. Установлено, что в механизмах десинхроноза ПВОЭ ведущая роль принадлежит эндотоксикозу. Активация процессов липопероксидации в мембранах эритроцитов повышает их ригидность, инициируя развитие анемии и нарушения микроциркуляции. Снижение продукции эритроцитов, статмокинетического индекса и инкорпорации Fe59 костным мозгом на фоне неадекватно высокого титра эритропоэза свидетельствует о торможении эритропоэтинзависимых процессов в клетках-мишенях, что способствует прогрессии септической анемии. Ключевые слова: биоритмы, эритропоэз, эритро-поэтин, анемия, сепсис

    Selection-driven chicken phenome and phenomenon of pectoral angle variation across different chicken phenotypes

    Get PDF
    An appreciation of the synergy between genome and phenome of poultry breed is essential for a complete understanding of their biology. Phenotypic traits are shaped under the influence of artificial, production-oriented, selection that often acts contrary to that which would occur during natural selection. In this comparative study, we analysed the phenotypic diversity of 39 chicken breeds and populations that make up a significant part of the world gene pool. Grouping patterns of breeds found within the traditional, phenotypic models of their classification/clustering required in-depth analysis using sophisticated mathematical approaches. As a result of studying performance and conformation phenotypes, a phenomenon of previously underestimated variability in pectoral angle (PA) was revealed. Moreover, patterns of PA relationship with productive traits were analysed. We propose using PA measurement as a promising new auxiliary index for selecting hens and roosters of breeding flocks in egg production improvement programs

    Disentangling clustering configuration intricacies for divergently selected chicken breeds

    Get PDF
    Divergently selected chicken breeds are of great interest not only from an economic point of view, but also in terms of sustaining diversity of the global poultry gene pool. In this regard, it is essential to evaluate the classification (clustering) of varied chicken breeds using methods and models based on phenotypic and genotypic breed differences. It is also important to implement new mathematical indicators and approaches. Accordingly, we set the objectives to test and improve clustering algorithms and models to discriminate between various chicken breeds. A representative portion of the global chicken gene pool including 39 different breeds was examined in terms of an integral performance index, i.e., specific egg mass yield relative to body weight of females. The generated dataset was evaluated within the traditional, phenotypic and genotypic classification/clustering models using the k-means method, inflection points clustering, and admixture analysis. The latter embraced SNP genotype datasets including a specific one focused on the performance-associated NCAPG-LCORL locus. The k-means and inflection points analyses showed certain discrepancies between the tested models/submodels and flaws in the produced cluster configurations. On the other hand, 11 core breeds were identified that were shared between the examined models and demonstrated more adequate clustering and admixture patterns. These findings will lay the foundation for future research to improve methods for clustering as well as genome- and phenomewide association/mediation analyses

    The Features of West Nile Fever Epidemiological Situation in the World and Russia in 2013 and Prognosis of Its Development in 2014

    Get PDF
    Epidemiological situation on West Nile Fever (WNF) in Europe in 2013 was characterized by a notable rise of morbidity rate primarily due to the outbreak of WNF in Serbia (302 cases registered). In the North America, in the United States and Canada, WNF manifestations in 2013 were characterized by the lower intensity compared to previous epidemic season. 192 cases were registered in 16 constituent entities of the Russian Federation in 2013. It was revealed, that genotype 2 West Nile Virus (WNV) circulated in the territory of the Volgograd and Saratov regions, the same as in Serbia, Greece and Italy, and genotype 1 WNV in the Astrakhan region. According to the data obtained from the Reference Center for monitoring over WNV pathogen, WNV markers were detected in the territory of 61 constituent entities of the Russian Federation throughout the period of observation in 1999-2013 which testified to the existence of potential risk of human exposure during epidemic season in most of the parts of country. According to Federal Service for Hydrometeorology and Environmental Monitoring forecast, climatic conditions in Russia for the next 5-10 years will stick to global warming trend which will contribute to further spread of WNV onto the northern areas

    Molecular Signatures Reveal Circadian Clocks May Orchestrate the Homeorhetic Response to Lactation

    Get PDF
    Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (n = 5) on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations and suggest that these changes are coordinated through molecular clocks
    corecore