9,319 research outputs found

    The multilevel pairing Hamiltonian versus the degenerate case

    Full text link
    We study the pairing Hamiltonian in a set of non degenerate levels. First, we review in the path integral framework the spontaneous breaking of the U(1) symmetry occurring in such a system for the degenerate situation. Then the behaviors with the coupling constant of the ground state energy in the multilevel and in the degenerate case are compared. Next we discuss, in the multilevel case, an exact strong coupling expansion for the ground state energy which introduces the moments of the single particle level distribution. The domain of validity of the expansion, which is known in the macroscopic limit, is explored for finite systems and its implications for the energy of the latter is discussed. Finally the seniority and Gaudin excitations of the pairing Hamiltonian are addressed and shown to display the same gap in leading order.Comment: 20 pages, 4 figure

    On the analytic solution of the pairing problem: one pair in many levels

    Get PDF
    We search for approximate, but analytic solutions of the pairing problem for one pair of nucleons in many levels of a potential well. For the collective energy a general formula, independent of the details of the single particle spectrum, is given in both the strong and weak coupling regimes. Next the displacements of the solutions trapped in between the single particle levels with respect to the unperturbed energies are explored: their dependence upon a suitably defined quantum number is found to undergo a transition between two different regimes.Comment: 30 pages, AMS Latex, 8 figures. Submitted to Phys. Rev.

    Are there hadronic bound states above the QCD transition temperature?

    Get PDF
    Recent lattice QCD calculations, at physical pion masses and small lattice spacings that approach the continuum limit, have revealed that non-diagonal quark correlators above the critical temperature are finite up to about 2 TcT_c. Since the transition from hadronic to free partonic degrees of freedom is merely an analytic cross-over, it is likely that, in the temperature regime between 1-2 TcT_c, quark and gluon quasiparticles and pre-hadronic bound states can coexist. The correlator values, in comparison to PNJL model calculations beyond mean-field, indicate that at least part of the mixed phase resides in color-neutral bound states. A similar effect was postulated for the in-medium fragmentation process, i.e. for partons which do not thermalize with the system and thus constitute the non-equilibrium component of the particle emission spectrum from a deconfined plasma phase. Here, for the first time we investigate the likelihood of forming bound states also in the equilibrated, parton dominated phase above TcT_c which is described by lattice QCD.Comment: 15 pages, 4 Figure

    Indicators of Early Childhood Disaster Risk: Using Data for Strategic Improvements in Emergency Preparedness

    Get PDF
    This Power Point presentation is a tool for ranking the vulnerability of the early care and education sector to disasters

    Effect of ELF e.m. fields on metalloprotein redox-active sites

    Full text link
    The peculiarity of the distribution and geometry of metallic ions in enzymes pushed us to set the hypothesis that metallic ions in active-site act like tiny antennas able to pick up very feeble e.m. signals. Enzymatic activity of Cu2+, Zn2+ Superoxide Dismutase (SOD1) and Fe2+ Xanthine Oxidase (XO) has been studied, following in vitro generation and removal of free radicals. We observed that Superoxide radicals generation by XO is increased by a weak field having the Larmor frequency fL of Fe2+ while the SOD1 kinetics is sensibly reduced by exposure to a weak field having the frequency fL of Cu2+ ion.Comment: 18 pages, 4 figure

    Superscaling of non-quasielastic electron-nucleus scattering

    Get PDF
    The present study is focused on the superscaling behavior of electron-nucleus cross sections in the region lying above the quasielastic peak, especially the region dominated by electroexcitation of the Delta. Non-quasielastic cross sections are obtained from all available high-quality data for Carbon 12 by subtracting effective quasielastic cross sections based on the superscaling hypothesis. These residuals are then compared with results obtained within a scaling-based extension of the relativistic Fermi gas model, including an investigation of violations of scaling of the first kind in the region above the quasielastic peak. A way potentially to isolate effects related to meson-exchange currents by subtracting both impulsive quasielastic and impulsive inelastic contributions from the experimental cross sections is also presented.Comment: RevTeX, 34 pages including 11 figure

    Meson-exchange Currents and Quasielastic Neutrino Cross Sections

    Get PDF
    We illustrate and discuss the role of meson-exchange currents in quasielastic neutrino-nucleus scattering induced by charged currents, comparing the results with the recent MiniBooNE data for differential and integrated cross sections.Comment: 9 pages, 8 figures; Proceedings of the 30th International Workshop on Nuclear Theory IWNT30, Rila Mountains, Bulgaria, June 27 - July 2, 201

    Bosonization and even Grassmann variables

    Full text link
    A new approach to bosonization in relativistic field theories and many-body systems, based on the use of fermionic composites as integration variables in the Berezin integral defining the partition function of the system, is tested. The method is applied to the study of a simplified version of the BCS model.Comment: 20 pages, LaTe

    The mechanics of the lung parenchyma and airway responsiveness to metacholine.

    Get PDF
    The lung parenchyma is anatomically and mechanically connected to the intraparenchymal airways. Due to forces of interdependence the lung parenchyma represents a mechanical load that opposes bronchial narrowing during airway smooth muscle activation. The mechanical load caused by the parenchyma is a function of the number of the alveolar attachments to the airways, and of the mechanical properties of the parenchyma. The extracellular matrix is a major component of the lung parenchyma responsible of most of its mechanical properties. The excessive airway narrowing observed in the asthmatic population may be the consequence of the altered mechanical properties of the extracellular matrix reducing the mechanical load that opposes airway smooth muscle contraction
    corecore