27 research outputs found

    The SAMI Galaxy Survey: mass-kinematics scaling relations

    Get PDF
    We use data from the Sydney-AAO Multi-object Integral-field spectroscopy (SAMI) Galaxy Survey to study the dynamical scaling relation between galaxy stellar mass MM_* and the general kinematic parameter SK=KVrot2+σ2S_K = \sqrt{K V_{rot}^2 + \sigma^2} that combines rotation velocity VrotV_{rot} and velocity dispersion σ\sigma. We show that the logMlogSK\log M_* - \log S_K relation: (1)~is linear above limits set by properties of the samples and observations; (2)~has slightly different slope when derived from stellar or gas kinematic measurements; (3)~applies to both early-type and late-type galaxies and has smaller scatter than either the Tully-Fisher relation (logMlogVrot\log M_* - \log V_{rot}) for late types or the Faber-Jackson relation (logMlogσ\log M_* - \log\sigma) for early types; and (4)~has scatter that is only weakly sensitive to the value of KK, with minimum scatter for KK in the range 0.4 and 0.7. We compare SKS_K to the aperture second moment (the `aperture velocity dispersion') measured from the integrated spectrum within a 3-arcsecond radius aperture (σ3\sigma_{3^{\prime\prime}}). We find that while SKS_{K} and σ3\sigma_{3^{\prime\prime}} are in general tightly correlated, the logMlogSK\log M_* - \log S_K relation has less scatter than the logMlogσ3\log M_* - \log \sigma_{3^{\prime\prime}} relation.Comment: 14 pages, 8 figures, Accepted 2019 May 22. Received 2019 May 18; in original form 2019 January

    The SAMI Galaxy Survey: the link between angular momentum and optical morphology

    Get PDF
    We investigate the relationship between stellar and gas specific angular momentum j, stellar mass M-* and optical morphology for a sample of 488 galaxies extracted from the Sydney-AAO Multi-object Integral field Galaxy Survey. We find that j, measured within one effective radius, monotonically increases with M-* and that, for M-* > 10(9.5) M-aS (TM), the scatter in this relation strongly correlates with optical morphology (i.e. visual classification and S,rsic index). These findings confirm that massive galaxies of all types lie on a plane relating mass, angular momentum and stellar-light distribution, and suggest that the large-scale morphology of a galaxy is regulated by its mass and dynamical state. We show that the significant scatter in the M-*-j relation is accounted for by the fact that, at fixed stellar mass, the contribution of ordered motions to the dynamical support of galaxies varies by at least a factor of 3. Indeed, the stellar spin parameter (quantified via lambda(R)) correlates strongly with S,rsic and concentration indices. This correlation is particularly strong once slow rotators are removed from the sample, showing that late-type galaxies and early-type fast rotators form a continuous class of objects in terms of their kinematic properties

    The SAMI Galaxy Survey: mass-kinematics scaling relations

    Get PDF
    We use data from the Sydney-AAO Multi-object Integral-field spectroscopy (SAMI) Galaxy Survey to study the dynamical scaling relation between galaxy stellar mass M∗ and the general kinematic parameter S_K = \sqrt{K V_rot^2 + σ ^2} that combines rotation velocity Vrot and velocity dispersion σ. We show that the log M∗ - log SK relation: (1) is linear above limits set by properties of the samples and observations; (2) has slightly different slope when derived from stellar or gas kinematic measurements; (3) applies to both early-type and late-type galaxies and has smaller scatter than either the Tully-Fisher relation (log M∗ - log Vrot) for late types or the Faber-Jackson relation (log M∗ - log σ) for early types; and (4) has scatter that is only weakly sensitive to the value of K, with minimum scatter for K in the range 0.4 and 0.7. We compare SK to the aperture second moment (the `aperture velocity dispersion') measured from the integrated spectrum within a 3-arcsecond radius aperture (σ _{3^' ' }}). We find that while SK and σ _{3^' ' }} are in general tightly correlated, the log M∗ - log SK relation has less scatter than the \log M_* - \log σ _{3^' ' }} relation.The SAMI Galaxy Survey is supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013, the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020, and other participating institutions. The SAMI Galaxy Survey website is samisurvey.org. DB is supported by an Australia Government Research Training Program Scholarship and ASTRO 3D. FDE acknowledges funding through the H2020 ERC Consolidator Grant 683184. JBH is supported by an ARC Laureate Fellowship that funds JvdS and an ARC Federation Fellowship that funded the SAMI prototype. JJB acknowledges support of an Australian Research Council Future Fellowship (FT180100231). JvdS is funded under Bland-Hawthorn’s ARC Laureate Fellowship (FL140100278). NS acknowledges support of a University of Sydney Postdoctoral Research Fellowship. Parts of this research were conducted by ASTRO 3D, through project number CE170100013. LC is the recipient of an Australian Research Council Future Fellowship (FT180100066) funded by the Australian Government. SB acknowledges the funding support from the Australian Research Council through a Future Fellowship (FT140101166). SMC acknowledges the support of an Australian Research Council Future Fellowship (FT100100457). BG is the recipient of an Australian Research Council Future Fellowship (FT140101202). MSO acknowledges the funding support from the Australian Research Council through a Future Fellowship (FT140100255). Support for AMM is provided by NASA through Hubble Fellowship grant #HST-HF2-51377 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. SKY acknowledges support from the Korean National Research Foundation (2017R1A2A1A05001116) and by the Yonsei University Future Leading Research Initiative (2015- 22-0064)

    Uvodna riječ

    Get PDF
    We present the second major release of data from the Sydney - Australian Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI) Galaxy Survey. Data Release Two includes data for 1559 galaxies, about 50 per cent of the full survey. Galaxies included have a redshift range 0.004 11], the velocity dispersion strongly increases towards the centre, whereas below log (M-*/M-circle dot) < 10 we find no evidence for a clear increase in the central velocity dispersion. This suggests a transition mass around log (M-*/M-circle dot) similar to 10 for galaxies with or without a dispersion-dominated bulge

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Do malaria control interventions reach the poor? A view through the equity lens.

    Get PDF
    Malaria, more than any other disease of major public health importance in developing countries, disproportionately affects poor people, with 58% of malaria cases occurring in the poorest 20% of the world's population. If malaria control interventions are to achieve their desired impact, they must reach the poorest segments of the populations of developing countries. Unfortunately, a growing body of evidence from benefit-incidence analyses has demonstrated that many public health interventions that were designed to aid the poor are not reaching their intended target. For example, the poorest 20% of people in selected developing countries were as much as 2.5 times less likely to receive basic public health services as the least-poor 20%. In the field of malaria control, a small number of studies have begun to shed light on differences by wealth status of malaria burden and of access to treatment and prevention services. These early studies found no clear difference in fever incidence based on wealth status, but did show significant disparities in both the consequences of malaria and in the use of malaria prevention and treatment services. Further study is needed to elucidate the underlying factors that contribute to these disparities, and to examine possible inequities related to gender, social class, or other factors. To achieve impact and overcome such inequities, malaria control efforts must begin to incorporate approaches relevant to equity in program design, implementation, and monitoring and evaluation
    corecore