406 research outputs found

    High temperature superconductor materials and applications

    Get PDF
    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated

    Strain Measurement Using FBG on COPV in Stress Rupture Test

    Get PDF
    White Sands Test Facility (WSTF) was requested to perform ambient temperature hydrostatic pressurization testing of a Space Transportation System (STS) 40-in. Kevlar Composite Overwrapped Pressure Vessel (COPV). The 40-in. vessel was of the same design and approximate age as the STS Main Propulsion System (MPS) and Orbiter Maneuvering System (OMS) vessels. The NASA Engineering Safety Center (NESC) assembled a team of experts and conducted an assessment that involved a review of national Kevlar COPY data. During the review, the STS COPVs were found to be beyond their original certification of ten years. The team observed that the likelihood of STS COPV Stress rupture, a catastrophic burst before leak failure mode, was greater than previously believed. Consequently, a detailed assessment of remaining stress rupture life became necessary. Prior to STS-114, a certification deviation was written for two flights of OV-103 (Discovery) and OV-104 (Atlantis) per rationale that was based on an extensive review of the Lawrence Livermore National Laboratories, COPV data, and revisions to the STS COPV stress levels. In order to obtain flight rationale to extend the certification deviation through the end of the Program, the Orbiter Project Office has directed an interagency COPV team to conduct further testing and analysis to investigate conservatism in the stress rupture model and evaluate material age degradation. Additional analysis of stress rupture life requires understanding the fiber stresses including stress that occurs due to thru-wall composite compression in COPV components. Data must be obtained at both zero gauge pressure (pre-stress) and at the component operating pressure so that this phenomenon can be properly evaluated. The zero gauge pressure stresses are predominantly a result of the autofrettage process used during vessel manufacture. Determining these pre-stresses and the constitutive behavior of the overwrap at pressure will provide necessary information to better predict the remaining life of the STS COPVs. The primary test objective is obtaining data to verify the hypothesis of a radially oriented thru-thickness stress-riser in the COPV composite whose magnitude is a function of the applied pressure and the load history. The anticipated load dependent response follows from the constitutive behavior of the composite overwrap so data to quantify its nonlinear and time dependent response will be sought. The objective of the Fiber Braggs Gratings (FBGs) were to advance the state-of-the-art by developing techniques using FBG sensors that are capable of assessing stress-rupture degradation in Kevlar COPVs in a health monitoring mode (1). Moreover, they sought to answer questions of how embedded sensors affect overall integrity of the structure. And lastly, they sought to provide an important link in the overall stress rupture study that will help close the loop on the COPV fabrication process. NDE inspection methods will be used from start to finish and FBG will be an integral link within the overall chain

    Experimental Investigation on Acousto-Ultrasonic Sensing Using Polarization-Maintaining Fiber Bragg Gratings

    Get PDF
    This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while using reduced number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor in a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves and they are oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It is shown that the PM-FBG sensor system is able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acousto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications

    Total hemispherical emittance measured at high temperatures by the calorimetric method

    Get PDF
    A calorimetric vacuum emissometer (CVE) capable of measuring total hemispherical emittance of surfaces at elevated temperatures was designed, built, and tested. Several materials with a wide range of emittances were measured in the CVE between 773 to 923 K. These results were compared to values calculated from spectral emittance curves measured in a room temperature Hohlraum reflectometer and in an open-air elevated temperature emissometer. The results differed by as much as 0.2 for some materials but were in closer agreement for the more highly-emitting, diffuse-reflecting samples. The differences were attributed to temperature, atmospheric, and directional effects, and errors in the Hohlraum and emissometer measurements (plus or minus 5 percent). The probable error of the CVE measurements was typically less than 1 percent

    Liouville Models of Black Hole Evaporation

    Full text link
    We construct new theories of dilation gravity coupled to conformal matter which are exact c=26c=26 conformal field theories and presumably consistent frameworks for discussing black hole physics in two dimensions. They differ from the CGHS equations in the precise dilaton dependence of the cosmological constant. A further modification proposed by Strominger with a view to eliminating unphysical ghost Hawking radiation is also considered. The new classical equations of motion are explicitly soluble, thus permitting an exact analysis of both static and dynamic senarios. While the static solutions are physically reasonable, the dynamical solutions include puzzling examples with wrong-sign Hawking radiation. We indicate how the latter problem may be resolved in the full quantum theory.Comment: 27 pages, revised ("Note Added" is expanded to show how careful treatment of quantum effects makes the Hawking radiation rate proportional to N/12 rather than (N-24)/12 and also to show that the cosmic censorship mechanism proposed by Russo et.al. for a somewhat different model works for our model as well. New references are added and the preprint number is corrected.) PUPT-132

    Instabilities in high Reynolds number flows

    Get PDF
    An asymptotic method for predicting stability characteristics, both stationary and travelling crossflow vortices, over a variety of surface variations was created. These include flat, convex and concave curved surfaces. Comparisons were made with two different numerical methods (Parabolised Stability Equations and Velocity-Vorticity) and good agreement, to within 5% of the numerical value of the crossflow mode streamwise growth rate was met for both stationary and travelling modes initially for a flat surface. An additional comparison was made with the streamwise growth rates to observe the impact of including curvature and a small convex curvature surface variation was used. Similar results were achieved for this study also. Likewise results for travelling crossflow modes were with accordance with the numerical values. To understand how effective this disturbance in penetrating the boundary-layer, receptivity analysis was developed to analyse various mechanisms in the production of crossflow vortices. A response function was established from the receptivity analysis to calculate the efficiency of this process. The response function is largest near the leading edge, meaning the disturbance is most effective at propagating into the boundary layer there. This means that the approach qualitatively agrees with other research methods. This is true for all surface curvatures and both crossflow modes. There is an intriguing behaviour the response function exhibits for small concave curvature with travelling modes at a moderate frequency. When we consider moderate spanwise wavenumber, the response function is much larger than other modes or surface variation and this could have repercussions for experiments. Careful consideration is needed for this case and can be avoided with the aid of this research. Finally, an asymptotic theory was created to analyse two-dimensional closed streamlines for secondary instabilities. The first instability analysed was the elliptical instability, due to the links to turbulence and the initial interest in this general problem. The method anticipates the existence of short-wave three-dimensional disturbances on a streamline at a distance away from the centre of the vortex of this secondary instability. There was no limitation in the study for symmetrical known streamlines, the analysis can be extended further to analyse any two-dimensional closed streamline such as separation bubbles. With this in mind an observation was required to test this hypothesis and the approach was tested on the structure inside a cavity, from which the location and behaviour of the disturbance was correctly predicted.Open Acces

    Local Strain Measurement of Kevlar Strand with Fiber Optic Bragg Grating

    Get PDF
    1987 DuPont manufactured 4560 denier Kevlar/Epoxy Strands were instrumented with nine and three sensors each. Stress tests were performed at 30,45,60,70 and 80% of ultimate strength with dwell times of 10,000 seconds. FBG showed uneven stress levels which is contrary to conventional observation

    Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    Get PDF
    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner

    Definition of ground test for verification of large space structure control

    Get PDF
    Control theory and design, dynamic system modelling, and simulation of test scenarios are the main ideas discussed. The overall effort is the achievement at Marshall Space Flight Center of a successful ground test experiment of a large space structure. A simplified planar model of ground test experiment of a large space structure. A simplified planar model of ground test verification was developed. The elimination from that model of the uncontrollable rigid body modes was also examined. Also studied was the hardware/software of computation speed

    High temperature superconductor materials and applications

    Get PDF
    One of the areas concerned itself with the investigation of the phenomena involved in formulating and making in the laboratory new and better superconductor material with enhanced values of critical current and temperature. Of special interest were the chemistry, physical processes, and environment required to attain these enhanced desirable characteristics. The other area concerned itself with producing high temperature superconducting thin films by pulsed laser deposition techniques. Such films are potentially very useful in the detection of very low power signals. To perform this research high vacuum is required. In the course of this effort, older vacuum chambers were maintained and used. In addition, a new facility is being brought on line. This latter activity has been replete with the usual problems of bringing a new facility into service. Some of the problems are covered in the main body of this report
    • …
    corecore