4 research outputs found
Effect of purified alkaline phosphatase from Bacillus licheniformis on growth of Zea mays L.
Some soil microbes have the capability to solubilize mineral phosphate into organic phosphorous and used as biofertilizer to improve crop productivity in agricultural field. In this study, phosphate solubilization assay was carried out onto media plates containing calcium phsophate precipitated nutrient agar media for bacterial strains like Bacillus megaterium MTCC 453, Bacillus subtilis MTCC 1134, Bacillus licheniformis MTCC 2312, Pseudomonas aeruginosa MTCC 424, Escherichia coli MTCC 570. Among these bacterial strains, B. licheniformis MTCC 2312 showed largest clear zone of phosphate solubilzation and maximum activity of alkaline phosphatase. The enzyme alkaline phosphatase was purified from B. licheniformis MTCC 2312 with purification fold 3.52 and specific activity 295.89 Unit/mg protein using DEAE-sepharose chromatography. This enzyme showed molecular weight as 60 KD, thermostability upto 50?C, pH stability up to 8.5 and Michaelis constant (Km) and maximum activity (Vmax) as 2.30 mM and 2223 U/ml respectively. The lyophilized powder of this enzyme was further supplemented with media components for the growth of Zea mays for carrying tissue culture experiment. The sterilized soil supplemented with alkaline phosphatase improved the total height, dry weight, % phosphate content in the stem and root of Zea mays by 3.07, 3.15, 2.35 and 1.76 fold respectively compared to control set. This enzyme could be used at large extent as effective biofertilizer for the agricultural industry
EFFECTS OF ARBUSCULAR MYCORRHIZA AND PHOSPHORUS APPLICATION ON GROWTH AND COLCHICINE CONCENTRATION IN GLORIOSA SUPERBA.
Gloriosa superba produces an array of alkaloids including colchicine, a compound of current interest in the treatment of various diseases. The tuber of Gloriosa superba is a rich source of colchicine which has shown anti-gout, anti-inflammatory, and antitumor activity. However, this promising compound remains expensive and Gloriosa superba is good source in global scale. Increase in yield of naturally occurring colchicine is an important area of investigation. The effects of inoculation by four arbuscular mycorrhizal (AM) fungi, Glomus mossae, Glomus fasciculatum, Gigaspora margarita and Gigaspora gilmorei either alone or supplemented with P-fertilizer, on colchicine concentration in Gloriosa superba were studied. The concentration of colchicine was determined by high-performance thin layer chromatography. The four fungi significantly increased concentration of colchicine in the herb. Although there was significant increase in concentration of colchicine in nonmycorrhizal P-fertilized plants as compared to control, the extent of the increase was less compared to mycorrhizal plants grown with or without P-fertilization. This suggests that the increase in colchicine concentration may not be entirely attributed to enhanced P-nutrition and improved growth. Among the four AM fungi Glomus mossae was found to be best. The study suggests a potential role of AM fungi in improving the concentration of colchicine in Gloriosa superba tuber
Purification and characterization of Bacillus cereus protease suitable for detergent industry
An extracellular alkaline protease from an alkalophilic bacterium, Bacillus cereus, was produced in a large amount by the method of extractive fermentation. The protease is thermostable, pH tolerant, and compatible with commercial laundry detergents. The protease purified and characterized in this study was found to be superior to endogenous protease already present in commercial laundry detergents. The enzyme was purified to homogeneity by ammonium sulfate precipitation, concentration by ultrafiltration, anion-exchange chromatography, and gel filtration. The purified enzyme had a specific activity of 3256.05 U/mg and was found to be a monomeric protein with a molecular mass of 28 and 31 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE, respectively. Its maximum protease activity against casein was found to be at pH 10.5 and 50 degrees C. Proteolytic activity of the enzyme was detected by casein and gelatin zymography, which gave a very clear protease activity zone on gel that corresponded to the band obtained on SDS-PAGE and nondenaturing PAGE with a molecular mass of nearly 31 kDa. The purified enzyme was analyzed through matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and identified as a subtilisin class of protease. Specific serine protease inhibitors, suggesting the presence of serine residues at the active site, inhibited the enzyme significantly