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Abstract

Some soil microbes have the capability to solubilize mineral phosphate into organic phosphorous
and  used  as  biofertilizer  to  improve  crop  productivity  in  agricultural  field.  In  this  study,
phosphate solubilization assay was carried out onto media plates containing calcium phsophate
precipitated nutrient agar media for bacterial strains like Bacillus megaterium MTCC 453, Bacillus
subtilis MTCC  1134,  Bacillus  licheniformis MTCC  2312,  Pseudomonas  aeruginosa MTCC  424,
Escherichia coli MTCC 570. Among these bacterial  strains,  B.  licheniformis MTCC 2312 showed
largest clear zone of phosphate solubilzation and maximum activity of alkaline phosphatase. The
enzyme alkaline phosphatase was purified from B. licheniformis MTCC 2312 with purification fold
3.52  and specific  activity  295.89  U  mg-1 protein  using  DEAE-sepharose  chromatography.  This
enzyme showed molecular weight as 60 KD, thermostability upto 50 ˚C, pH stability up to 8.5 and
Michaelis constant (Km) and maximum activity (Vmax) as 2.30 mM and 2223 U ml-1 respectively. The
lyophilized powder of this enzyme was further supplemented with media components for the
growth of Zea mays for carrying tissue culture experiment. The sterilized soil supplemented with
alkaline phosphatase improved the total height, dry weight, % phosphate content in the stem and
root  of  Zea mays by 3.07,  3.15,  2.35 and 1.76 fold respectively  compared to control  set.  This
enzyme could be used at large extent as effective biofertilizer for the agricultural industry.
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Introduction

Phosphate  anions  are  extremely  reactive  and
present  in  insoluble  complex  as  phosphorylated
derivatives of  Ca2+,  Mg2+,  Fe3+,  Al3+ in  soil  samples
and unavailable for plant (1, 2). Some soil microbes
have the capability to solubilize these immobilized
insoluble  phosphate  either  by  secreting  organic
acids  or phosphohydrolase  enzyme (3,  4).  Several
microbes have been reported to exhibit phosphate

solubilization  activity  for  hydrolyzing  insoluble
complex  of  phosphate  like  dicalcium  phosphate,
hydroxyapatite,  tricalcium  phosphate  into
inorganic  phosphate  (5,  6).  Bacterial  strains  like
Bacillus,  Pseudomonas,  Aereobacter,  Burkholderia,
Erwinia,  Rhizobium,  Agrobacterium,  Microccocus,
Achromobacter,  Flavobacterium,  Paenibacillus
exhibited phosphate solubilization activity (3, 7-15).
Soil  inoculated  with  these  phosphate-solubilizing
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bacteria (PSB) improved the yield and productivity
of some crops (2). In conjugation with phosphate-
solubilizing  bacteria,  these  biofertilizers  should
provide  a  cheap  source  of  chemical  phosphate
fertilizer  for  crop  production  (16).  Hence,
phosphate-solubilizing bacteria have the potential
to  improve  crop  production  in  this  area.  The
performance  of  these microbes  for hydrolysis  of
insoluble  complex  of  phosphate  is  affected
severely under climatic stress of high salt, pH and
temperature.  In  the  alkaline  soils  of  the tropical
field, the optimum concentration of salts, pH value
and temperature range varies from 1-2%, 7.5-10.5,
35-45 °C respectively. These climate changes result
variance in survivability of phosphate-solubilizing
bacteria (17-19).  Bacillus species like  B.  brevis,  B.
licheniformis,  B.  megaterium,  B.  polymixa,  B.
thruringenisis have  unique  characteristics  of
producing  stress  resistant  spores  which  can
withstand a wide range of pH and temperature of
soil  (3,  17).  Bacillus  species are  also  known  to
produce  large  amount  of  alkaline  phosphatase
enzyme  extracellularly  which  easily  solubilize
mineralized  phosphate  of  soil  and  thereby
enhance  the  phosphorous  uptake  by  the  plant
leading to improve crop productivity. There is not
any scientific report available till  date for use of
purified alkaline  phosphatase  secreted  from
Bacillus  spp. for  improving  productivity  of  crop
plant.  This  study  will  highlight  the  biochemical
characterization of  alkaline phosphatase from  B.
licheniformis and its application as biofertilizer for
growth of Zea mays plant. 

Materials and Methods

Selection  of  potent  phosphate  solubilzing
bacteria 

Bacterial  strains  (procured  from  IMTECH
Chandigarh)  like  B.  megaterium  MTCC  453,  B.
subtilis MTCC 1134, B. licheniformis MTCC 2312, P.
aeruginosa MTCC  424,  E.coli MTCC  570  were
maintained  in  nutrient  agar  media  (pH 7.5)  and
subcultured once in two weeks.  They were grown
in growth media (pH 7.5)  containing 1% glucose,
0.1%  yeast  extract,  1%  peptone,  0.002%  KH2PO4,
0.02% MgSO4.7H2O, 0.5% NaCl and incubated at 35
˚C, 120 rpm for 72 h. The phosphate solubilization
assay  was  carried  out  by  streaking  calcium
phsophate precipitated nutrient agar media plates
containing 10% K2HPO4, 10% CaCl2 and incubating
at  27  ˚C  for  72  h  with  the  suspension  of  these
bacterial  strains  (20).  Clear  zone  of  phosphate
solubilization  was  measured  around  bacterial
colony  after  14  days  and  the  bacterial  strain
showing  largest  zone  was  selected  for  further
study.

The  fermentative  broth  culture  was
centrifuged at 10,000 g at 30 ˚C for 15 min and cell
free  supernatant  was  used  for  estimation  of
activity of alkaline phosphatase. The activity was
measured  spectrophotometrically  at  415  nm  by

monitoring  the  release  of  p-nitrophenol  from  p-
nitrophenyl  phosphate  disodium  salt  (pNPP)  (21,
22). One unit of alkaline phosphatase is defined as
the amount of the enzyme required for liberation
of  1  μmole  of  p-nitro  phenol  per  ml  of  reaction
mixture per minute under standard condition.

Purification of alkaline phosphatase

The fermentative broth culture was centrifuged at
10000  ×  g for  15  min  at  4  ˚C  and  collected
supernatant was used as crude extract. The crude
extract was partially purified by precipitating with
30–80%  ammonium  sulfate  saturation  and  the
pellet was dissolved in 50 mM Tris–HCl (pH 8.0).
Each  pellet  suspension was  dialysed  against  Tris
HCl buffer and dialysed fraction was subjected to
ion  exchange  chromatography  using  DEAE-
Sephadex G-200.  Activity of alkaline phosphatase
was estimated  in each fraction and total  protein
was  simultaneously  determined  by  Bradford
method.  SDS-PAGE  electrophoresis  was  used  for
estimation of molecular weight of purified extract
of alkaline phosphatase.

Characterization of alkaline Phosphatase

Kinetic  constant  values  Km and  Vmax for  purified
alkaline phosphatase were determined by plotting
Lineweaver  Burk  plot  for  different  substrate
concentration  (2.0-30  mM)  (Fig.  1).  The  value  of
optimum  pH  was  estimated  by  incubating  the
reaction mixture in different range of pH values
(8.5 to 12.5) at 50 ˚C for 20 min and temperature
was  optimized  by  incubating  the  mixture  with
optimum pH at different temperature (40 to 100 ˚C)
for 20 min. The thermostability was determined by
incubating purified enzyme extract at temperature
50 ˚C for intervals of 2, 4, 6, 8, 10, 20, 40, 50 and 100
h.  Substrate  specificity  test  for  alkaline
phosphatase  was  done  by  analyzing  inorganic
phosphate  obtained  from  hydrolysis  of
monosubstituted  phosphate  linkages  compounds
by alkaline phosphatase. Lowry-Lopez method (23)
was  used  to  determine  the  concentration  of
released  inorganic  phosphate.  The  reaction
mixture containing alkaline phosphatase enzyme
and phosphorylated compounds (5.4 mM-Tris-HCl,
pH 9.5) was incubated at 50 ˚C for 20 min. 
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Fig.  1.  Line  weaver  Burk  plot  for  purified  alkaline
phosphatase.
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Growth of plant in treated and untreated soil 

Seeds of  Zea mays were washed with autoclaved
water  and  sterilized with  sodium  hypochlorite
(0.5%). These sterilized seeds were germinated in
pot  filled  with  sterilized  soil  supplemented  with
calcium phosphate [Ca5(PO4)3OH] at different doses
(0, 200 and 375 mg kg–1 soil). Three pots were filled
with  soil  having  different  doses  of  calcium
phosphate  as  control  sets  and  three  pots  were
filled  with  calcium  phosphate  supplemented
sterilized soil  along with  lyophiillized  powder of
alkaline  phosphatase  as  experimental  sets.
Sterilized seeds of Zea mays were inserted into all
these pots and allowed to germinate for 60days in
greenhouse  under  controlled  conditions  at
temperature varying 35-50 ˚C. Height of the plant
and  percent  of  phosphate  content  in  stem  and
roots was recorded. Plant samples of each control
and experimental set after harvesting were dried
in oven at 65 ˚C to obtain total plant biomass (Dry
weight). 

Determination of percent phosphate content

Vanado-molybdophosphoric  acid  reagent  was
prepared by mixing ammonium molybdate (7.5 g l-

1)  and  concentrated  ammonium  metavandate
(0.6875 g l-1). Standard phosphate solution (50 mg l-

1) was prepared by adding 0.2195 g KH2PO4 to 100
ml distilled water and acidifying with 25 ml of 7N
H2SO4.  Phosphate  content  in  plant  sample was
estimated  by  mixing  10  ml  acid  digest  of  plant
sample  with  10  ml  of  the  vanadate-molybdate
reagent, diluting solutions to 50 ml and measuring
absorbance at 420 nm after 10 min. The standard
curve  obtained  for  estimation  of  phosphate
content has been shown in Fig. 2.

Fig. 2. Standard curve for estimation of phosphate content.

Results and Discussion

Bacterial strains like  B. megaterium  MTCC 453,  B.
subtilis MTCC 1134, B. licheniformis MTCC 2312, P.
aeruginosa MTCC  424,  E.  coli MTCC  570  were
streaked  on  nutrient  agar  media  plates
supplemented  with  calcium  phosphate  and
screened on the basis of zone of clearance due to
phosphate  solubilizing  assay  (Fig.  3)  and
estimation of activity of alkaline phosphatase (Fig.
4). B. licheniformis MTCC 2312 showed largest clear

zone  of  phosphate  solubilization  in  compare  to
other strains. This visual analysis method has been
considered  as  general  reliable  method  for
morphological  characterization  of  phosphate-
solubilizing-microbes  (3,  7,  8,  24-26).  Alkaline
phosphatase  activity  was  estimated  for  all  the
bacterial strains and maximum activity was found
as 1550 U ml-1 for  B. licheniformis  MTCC 2312 as
shown in Fig.  4.  B. licheniformis  MTCC 2312 was
selected as potent bacterial strain for purification
of alkaline phosphatase. Alkaline phosphatase was
purified  by  fractional  precipitation  with  30-80%
ammonium  sulfate  and  DEAE  column  with
purification fold 3.52 fold and 1.614% of recovery
(Table 1). 
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Fig.  3.  Clear  zone of  phosphate  solubilization of  lab strain
(Bacillus  licheniformis MTCC  2312,  strain  1  (Bacillus
megaterium MTCC 453), strain2 (Bacillus subtilis MTCC 1134), 
strain  3,4  Escherichia  coli MTCC  570  and  Strain  5
(Pseudomonas aeruginosa MTCC 424).

Fig.  4. Screening  of  bacterial  strains  on  the  basis  of  their
ability to produce alkaline phoshatase.
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The  specific  activity  for  this  enzyme  was
obtained as 95.89 U mg-1 of protein which showed
high purity of this enzyme. The purified fraction of
DEAE-sepharose  column  showed  a  molecular
weight  of  60  kD  after  SDS-PAGE  electrophoresis
(Fig. 5).  The low molecular weight of this enzyme
is  comparable  with  most  alkaline  phosphatases
isolated from other bacterial strains like  Bacillus,
Pseudomonas (22,  27-31)  which  is  lower  than
mammalian alkaline phosphatases (120-200 KD). 

Table  1.  Purification  scheme  of  B.  licheniformis MTCC1483
alkaline phosphatases by DEAE column chromatography.

Purification
steps

Total
Activity
(Unit)

Total
protein

(mg)

Specific
Activity
(U mg-1)

Purification
fold

Crude Extract 33803 402.56 83.97 1
(NH4)2SO4

precipitation 28250 218.00 129.59 1.54

DEAE-
Sepharose

15650 52.89 295.89 3.52

Fig. 5. Purified band for alkaline phosphatase for ladder (lane1),
crude extract (Lane2), ammonium sulphate precipitation (lane3),
fraction 1 of DEAE-Sepharose (Lane 4), fraction2 (lane 5).

The  activity  of  alkaline  phosphatase
increased with increase of  pH value  from 6 and
optimum  activity  was  estimated  at  pH  8.5  as
shown in Fig. 6. The activity of this enzyme was
found  to  be  increased  with  increase  of
temperature and maximum activity was estimated
at 50 ˚C (Fig. 7). 

Fig. 6. Effect of pH on activity of alkaline phosphatase from B.
licheniformis.

Alkaline  phosphatases  are  non-specific  to
hydrolyse  many  phosphorylated  substrates  like
phosphomonoesters,  diesters and triesters (27-29,
32).  In  this  study,  purified  alkaline  phosphatase
showed substrate specificity for a wide variety of
phosphorylated compounds like para nitro-phenyl

phosphate,  Guanosine  mono-phosphate  (GMP),
Adenosine  monophosphate  (AMP),  Adenosine  Di-
Phosphate  (ADP),  Adenosine Tri-phosphate  (ATP),
Glucose-6-Phosphate  and  phosphoenol  pyruvate
(PEP)  as  shown  in  Table  2.  Here  monoester-
phosphorous  compounds  like  pNPP,  GMP,  AMP,
PEP  showed  more  specificity  than  diester  or
trimester  compounds  suggesting  its
phosphomonoesterase nature. The kinetic constant
values of Km and Vmax was obtained as 2.30 mM and
2223 U ml-1 respectively for this enzyme with para
nitrophenyl phosphate sustrate. It is evident from
Table 3 that alkaline phosphatse retained its 50%
activity upto 8 h which can be reported as its half
life  time.  Alkaline  phosphatase  was  found  to  be
thermostable up to 50 h at temperature 50 ˚C. The
stability of alkaline phosphatase produced from B.
licheniformis MTCC  2312  at  high  pH  and  high
temperature is comparable to stability of alkaline
phosphatase  secreted from thermophilic  bacteria
(33-35).

Table  2. Effect  of  different  substrate  on  hydrolysis  of
extracellular alkaline phosphatase from B. licheniformis.

Different types of phosphorylated
Substrates Relative activity (%)

p-Nitrophenyl phosphate 100
Glucose-6- Phosphate 18.12
Adenosine monophosphate 47.23
Adenosine diphosphate 13.23
Adenosine triphosphate 23.24
Guanosine monophosphate 63.48
Phosphoenol Pyruvic acid 12.41

Table 3. Thermostability of alkaline phosphatase for different
time interval at temperature 50 ˚C.

Time  (h) Alkaline Phosphatase
Activity (Unit ml-1)

% Thermostability

0 1550.00 100
2 1304.24 86.95
4 1173.71 78.25
6 1063.18 70.88
8 752.65 50.18

10 531.59 35.44
20 421.06 28.07
40 378.95 25.26
50 210.53 14.03

100 0 0
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Fig.  7.  Effect  of  temperature  on  activity  of  alkaline
phosphatase from B. licheniformis.



Plant Science Today (2019) 6(sp1): 583-589

Some Bacillus  spp. have  phosphate
solubilizing property and used as biofertilzer for
improving crop productivity in alkaline soil due to
having  unique  characteristic  of  producing  stress
resistant  spores  against  high  pH  and  high
temperature range (3, 7, 10). The solubilization of
insoluble complex of phosphate into free inorganic
phosphate  has  been  reported  in  phosphate
solubilizing microbes by secretion of various types
of  organic  acids  like  malonic,  gluconic,  oxalic,
glycolic,  and  succinic  acid  (8,  9,  16,  36,  37).  The
hydrolysis of organic phosphorous compounds by
these microbes has been reported due to secretion
of  phosphohydrolase  enzymes.  These
dephosphorylation reactions are mainly caused by
the  hydrolysis  of  phosphoester  or
phosphoanhydride  bonds  in  the  presence  of
phosphohydrolases (8, 9, 38-40).

The  purified  extract  of  alkaline
phosphatase was lyophollized and its powder was
supplemented  with  sterilized  soil  with  calcium
phosphate to observe its effect on growth and yield
of Zea mays crop. The height of plant and total dry
weight  of  Z.  mays per  pot  was  found  to  be
increased by  3.07  and 3.15  fold  in  experimental
sets compared to control (Table 4). The percentage
of phosphate content in stem and root of  Z. mays
was also found to be increased by 2.35 and 1.76
fold  respectively  (Table  4). Phosphohydrolase
enzymes  secreted  from  some  phosphate

solubilizing  microbes  has  the  capability  of
hydrolysis  of  inorganic  or  organic  phosphate  to
improve plant growth performance (8, 41). Many
plants like potato, rice, sugar beet, tomato, lettuce,
wheat,  maize,  sorghum,  etc  showed  improved
growth  after  supplementation  of  immobilized
beads  of  phosphate  solubilizing  bacteria  as
biofertilizer  (8,  9,  42-47).  There  are  no  scientific
reports available for use of the lyophilized powder
of  alkaline  phopshatase  to  improve  crop
productivity in alkaline soil of arid region till date.

Conclusion

Alkaline phopshatase  from  B.  licheniformis  could
be  used  as  effective  biofertilizer  for  agricultural
industry  to  improve  crop  productivity.  This
microbial  product  has high range of pH stability

along with thermostability and therefore could be
used  as  biofertilizer  to  improve  the  crop
productivity  in  arid  region under  severe  climate
condition. 
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