890 research outputs found

    Constraining the mass density of free-floating black holes using razor-thin lensing arcs

    Get PDF
    Strong lensing of active galactic nuclei in the radio can result in razor-thin arcs, with a thickness of less than a milli-arcsecond, if observed at the resolution achievable with very long baseline interferometry (VLBI). Such razor-thin arcs provide a unique window on the coarseness of the matter distribution between source and observer. In this paper, we investigate to what extent such razor-thin arcs can constrain the number density and mass function of `free-floating' black holes, defined as black holes that do not, or no longer, reside at the centre of a galaxy. These can be either primordial in origin or arise as by-products of the evolution of super-massive black holes in galactic nuclei. When sufficiently close to the line of sight, free-floating black holes cause kink-like distortions in the arcs, which are detectable by eye in the VLBI images as long as the black hole mass exceeds ∼1000\sim 1000 Solar masses. Using a crude estimate for the detectability of such distortions, we analytically compute constraints on the matter density of free-floating black holes resulting from null-detections of distortions along a realistic, fiducial arc, and find them to be comparable to those from quasar milli-lensing. We also use predictions from a large hydrodynamical simulation for the demographics of free-floating black holes that are not primordial in origin, and show that their predicted mass density is roughly four orders of magnitude below the constraints achievable with a single razor-thin arc.Comment: 17 pages, 13 figures, 1 table, comments welcom

    Escape rate from a metastable state weakly interacting with a heat bath driven by an external noise

    Full text link
    Based on a system-reservoir model, where the reservoir is driven by an external stationary, Gaussian noise with arbitrary decaying correlation function, we study the escape rate from a metastable state in the energy diffusion regime. For the open system we derive the Fokker-Planck equation in the energy space and subsequently calculate the generalized non-Markovian escape rate from a metastable well in the energy diffusion domain. By considering the dynamics in a model cubic potential we show that the results obtained from numerical simulation are in good agreement with the theoretical prediction. It has been also shown numerically that the well known turnover feature can be restored from our model.Comment: 11 pages, 2 figure

    Exotic phases in compact stars

    Full text link
    We discuss how the co-existence of hyperons, antikaon condensate and color superconducting quark matter in neutron star interior influences the gross properties of compact stars such as, the equation of state and mass-radius relationship. We compare our results with the recent observations. We also discuss about superdense stars in the third family branch which may contain a pure color-flavor-locked (CFL) core.Comment: 6 pages, presented in "Strange Quarks in Matter" (SQM2003) conference, Atlantic Beach, NC, USA, March 12-17, 2003 and to be published in J. Phys.

    The noise properties of stochastic processes and entropy production

    Get PDF
    Based on a Fokker-Planck description of external Ornstein-Uhlenbeck noise and cross-correlated noise processes driving a dynamical system we examine the interplay of the properties of noise processes and the dissipative characteristic of the dynamical system in the steady state entropy production and flux. Our analysis is illustrated with appropriate examples.Comment: RevTex, 1 figure, To appear in Phys. Rev.

    Practical Low Data-Complexity Subspace-Trail Cryptanalysis of Round-Reduced PRINCE

    Get PDF
    Subspace trail cryptanalysis is a very recent new cryptanalysis technique, and includes differential, truncated differential, impossible differential, and integral attacks as special cases. In this paper, we consider PRINCE, a widely analyzed block cipher proposed in 2012. After the identification of a 2.5 rounds subspace trail of PRINCE, we present several (truncated differential) attacks up to 6 rounds of PRINCE. This includes a very practical attack with the lowest data complexity of only 8 plaintexts for 4 rounds, which co-won the final round of the PRINCE challenge in the 4-round chosen-plaintext category. The attacks have been verified using a C implementation. Of independent interest, we consider a variant of PRINCE in which ShiftRows and MixLayer operations are exchanged in position. In particular, our result shows that the position of ShiftRows and MixLayer operations influences the security of PRINCE. The same analysis applies to follow-up designs inspired by PRINCE

    Artificial Emotion Generation Based on Personality, Mood, and Emotion for Life-Like Facial Expressions of Robots

    Full text link
    International audienceWe can't overemphasize the importance of robot's emotional expressions as robots step into human's daily lives. So, the believable and socially acceptable emotional expressions of robots are essential. For such human-like emotional expression, we have proposed an emotion generation model considering personality, mood and history of robot's emotion. The personality module is based on the Big Five Model (OCEAN Model, Five Factor Model); the mood module has one dimension such as good or bad, and the emotion module uses the six basic emotions as defined by Ekman. Unlike most of the previous studies, the proposed emotion generation model was integrated with the Linear Dynamic Affect Expression Model (LDAEM), which is an emotional expression model that can make facial expressions similar to those of humans. So, both the emotional state and expression of robots can be changed dynamically

    Density dependent hadron field theory for neutron stars with antikaon condensates

    Get PDF
    We investigate K−K^- and Kˉ0\bar K^0 condensation in β\beta-equilibrated hyperonic matter within a density dependent hadron field theoretical model. In this model, baryon-baryon and (anti)kaon-baryon interactions are mediated by the exchange of mesons. Density dependent meson-baryon coupling constants are obtained from microscopic Dirac Brueckner calculations using Groningen and Bonn A nucleon-nucleon potential. It is found that the threshold of antikaon condensation is not only sensitive to the equation of state but also to antikaon optical potential depth. Only for large values of antikaon optical potential depth, K−K^- condensation sets in even in the presence of negatively charged hyperons. The threshold of Kˉ0\bar K^0 condensation is always reached after K−K^- condensation. Antikaon condensation makes the equation of state softer thus resulting in smaller maximum mass stars compared with the case without any condensate.Comment: 20 pages, 7 figures; final version to appear in Physical Review
    • …
    corecore