97 research outputs found

    A study of information security awareness program effectiveness in predicting end-user security behavior

    Get PDF
    As accessibility to data increases, so does the need to increase security. For organizations of all sizes, information security (IS) has become paramount due to the increased use of the Internet. Corporate data are transmitted ubiquitously over wireless networks and have increased exponentially with cloud computing and growing end-user demand. Both technological and human strategies must be employed in the development of an information security awareness (ISA) program. By creating a positive culture that promotes desired security behavior through appropriate technology, security policies, and an understanding of human motivations, ISA programs have been the norm for organizational end-user risk mitigation for a number of years (Peltier, 2013; Tsohou, Karyda, Kokolakis, & Kiountouzis, 2015; Vroom & Solms, 2004). By studying the human factors that increase security risks, more effective security frameworks can be implemented. This study focused on testing the effectiveness of ISA programs on enduser security behavior. The study included the responses of 99/400 employees at a mid-size corporation. The theory of planned behavior was used as model to measure the results of the tool. Unfortunately, while data collected indicated that ISA does cause change in security behavior, the data also showed no significance. Thus, we fail to reject the null hypothesis

    S7 : Probing the physics of Seyfert Galaxies through their ENLR & HII Regions

    Full text link
    Here we present the first results from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) which aims to investigate the physics of ~140 radio-detected southern active Galaxies with z<0.02 through Integral Field Spectroscopy using the Wide Field Spectrograph (WiFeS). This instrument provides data cubes of the central 38 x 25 arc sec. of the target galaxies in the waveband 340-710nm with the unusually high resolution of R=7000 in the red (530-710nm), and R=3000 in the blue (340-560nm). These data provide the morphology, kinematics and the excitation structure of the extended narrow-line region, probe relationships with the black hole characteristics and the host galaxy, measures host galaxy abundance gradients and the determination of nuclear abundances from the HII regions. From photoionisation modelling, we may determine the shape of the ionising spectrum of the AGN, discover whether AGN metallicities differ from nuclear abundances determined from HII regions, and probe grain destruction in the vicinity of the AGN. Here we present some preliminary results and modelling of both Seyfert galaxies observed as part of the survey.Comment: 6 pages, 2 figures, Invited Talk at the IAU symposium 30

    Probing the Physics of Narrow Line Regions in Active Galaxies II: The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)

    Get PDF
    Here we describe the \emph{Siding Spring Southern Seyfert Spectroscopic Snapshot Survey} (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph (WiFeS) mounted on the ANU 2.3m telescope located at the Siding Spring Observatory to deliver an integral field of 38×2538\times25~ arcsec at a spectral resolution of R=7000R=7000 in the red (530−710530-710nm), and R=3000R=3000 in the blue (340−560340-560nm). {From these data cubes we have extracted the Narrow Line Region (NLR) spectra from a 4 arc sec aperture centred on the nucleus. We also determine the HÎČ\beta and [OIII]~λ\lambda5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the HÎČ\beta and \lOIII\ luminosities {determined from spectra for which the stellar continuum has been removed.} We present a set of images of the galaxies in [OIII]~λ\lambda5007, [NII]~λ\lambda6584 and Hα\alpha which serve to delineate the spatial extent of the extended narrow line region (ENLR) and {\bf also to} reveal the structure and morphology of the surrounding \HII\ regions. Finally, we provide a preliminary discussion of those Seyfert~1 and Seyfert~2 galaxies which display coronal emission lines in order to explore the origin of these lines.Comment: Accepted for publication 9 Jan 2015, Astrophysical Journal Supplements. 49pages, 8 figure

    Probing the Physics of Narrow Line Regions in Active Galaxies III: Accretion and Cocoon Shocks in the LINER NGC1052

    Full text link
    We present Wide Field Spectrograph (WiFeS) integral field spectroscopy and HST FOS spectroscopy for the LINER galaxy NGC 1052. We infer the presence of a turbulent accretion flow forming a small-scale accretion disk. We find a large-scale outflow and ionisation cone along the minor axis of the galaxy. Part of this outflow region is photoionised by the AGN, and shares properties with the ENLR of Seyfert galaxies, but the inner (Râ‰Č1.0R \lesssim 1.0~arcsec) accretion disk and the region around the radio jet appear shock excited. The emission line properties can be modelled by a "double shock" model in which the accretion flow first passes through an accretion shock in the presence of a hard X-ray radiation, and the accretion disk is then processed through a cocoon shock driven by the overpressure of the radio jets. This model explains the observation of two distinct densities (∌104\sim10^4 and ∌106\sim10^6 cm−3^{-3}), and provides a good fit to the observed emission line spectrum. We derive estimates for the velocities of the two shock components and their mixing fractions, the black hole mass, the accretion rate needed to sustain the LINER emission and derive an estimate for the jet power. Our emission line model is remarkably robust against variation of input parameters, and so offers a generic explanation for the excitation of LINER galaxies, including those of spiral type such as NGC 3031 (M81).Comment: Accepted for publication in Astrophysical Journal. 16 pages, 12 figure

    Dissecting Galaxies: Separating Star Formation, Shock Excitation and AGN Activity in the Central Region of NGC 613

    Get PDF
    The most rapidly evolving regions of galaxies often display complex optical spectra with emission lines excited by massive stars, shocks and accretion onto supermassive black holes. Standard calibrations (such as for the star formation rate) cannot be applied to such mixed spectra. In this paper we isolate the contributions of star formation, shock excitation and active galactic nucleus (AGN) activity to the emission line luminosities of individual spatially resolved regions across the central 3 ×\times 3 kpc2^2 region of the active barred spiral galaxy NGC∌\sim613. The star formation rate and AGN luminosity calculated from the decomposed emission line maps are in close agreement with independent estimates from data at other wavelengths. The star formation component traces the B-band stellar continuum emission, and the AGN component forms an ionization cone which is aligned with the nuclear radio jet. The optical line emission associated with shock excitation is cospatial with strong H2H_2 and [Fe II] emission and with regions of high ionized gas velocity dispersion (σ>100\sigma > 100 km s−1^{-1}). The shock component also traces the outer boundary of the AGN ionization cone and may therefore be produced by outflowing material interacting with the surrounding interstellar medium. Our decomposition method makes it possible to determine the properties of star formation, shock excitation and AGN activity from optical spectra, without contamination from other ionization mechanisms.Comment: 16 pages, 12 figures. Accepted for publication in MNRA

    Dissecting galaxies: spatial and spectral separation of emission excited by star formation and AGN activity

    Get PDF
    The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and active galactic nucleus (AGN) activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion on to an AGN. We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (>85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Hα, HÎČ, [N II]λ6583, [S II]λλ6716, 6731, [O III]λ5007 and [O II]λλ3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star-forming and AGN components also have distinct spatial distributions which trace structures seen in high-resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful

    Grand challenges in entomology: priorities for action in the coming decades

    Get PDF
    1. Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. 2. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). 3. A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. 4. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). 5. Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. 6. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change

    Grand challenges in entomology: Priorities for action in the coming decades

    Get PDF
    Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change
    • 

    corecore