71 research outputs found

    Identification of a homolog of Arabidopsis DSP4 (SEX4) in chestnut: its induction and accumulation in stem amyloplasts during winter or in response to the cold_

    Get PDF
    Oligosaccharide synthesis is an important cryoprotection strategy used by woody plants during winter dormancy. At the onset of autumn, starch stored in the stem and buds is broken down in response to the shorter days and lower temperatures resulting in the buildup of oligosaccharides. Given that the enzyme DSP4 is necessary for diurnal starch degradation in Arabidopsis leaves, this study was designed to address the role of DSP4 in this seasonal process in Castanea sativa Mill. The expression pattern of the CsDSP4 gene in cells of the chestnut stem was found to parallel starch catabolism. In this organ, DSP4 protein levels started to rise at the start of autumn and elevated levels persisted until the onset of spring. In addition, exposure of chestnut plantlets to 4 °C induced the expression of the CsDSP4 gene. In dormant trees or cold-stressed plantlets, the CsDSP4 protein was immunolocalized both in the amyloplast stroma and nucleus of stem cells, whereas in the conditions of vegetative growth, immunofluorescence was only detected in the nucleus. The studies indicate a potential role for DSP4 in starch degradation and cold acclimation following low temperature exposure during activity–dormancy transition

    Transferosomes as nanocarriers for drugs across the skin : quality by design from lab to industrial scale

    Get PDF
    Transferosomes, also known as transfersomes, are ultradeformable vesicles for transdermal applications consisting of a lipid bilayer with phospholipids and an edge activator and an ethanol/aqueous core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or amongst the lipid bilayer. Compared to liposomes, transferosomes are able to reach intact deeper regions of the skin after topical administration delivering higher concentrations of active substances making them a successful drug delivery carrier for transdermal applications. Most transferosomes contain phosphatidylcholine (C18) as it is the most abundant lipid component of the cell membrane, and hence, it is highly tolerated for the skin, decreasing the risk of undesirable effects, such as hypersensitive reactions. The most common edge activators are surfactants such as sodium deoxycholate, Tween® 80 and Span® 80. Their chain length is optimal for intercalation within the C18 phospholipid bilayer. A wide variety of drugs has been successfully encapsulated within transferosomes such as phytocompounds like sinomenine or apigenin for rheumatoid arthritis and leukaemia respectively, small hydrophobic drugs but also macromolecules like insulin. The main factors to develop optimal transferosomal formulations (with high drug loading and nanometric size) are the optimal ratio between the main components as well as the critical process parameters for their manufacture. Application of quality by design (QbD), specifically design of experiments (DoE), is crucial to understand the interplay among all these factors not only during the preparation at lab scale but also in the scale-up process. Clinical trials of a licensed topical ketoprofen transferosomal gel have shown promising results in the alleviation of symptons in orthreothritis with non-severe skin and subcutaneous tissue disorders. However, the product was withdrawn from the market which probably was related to the higher cost of the medicine linked to the expensive manufacturing process required in the production of transferosomes compared to other conventional gel formulations. This example brings out the need for a careful formulation design to exploit the best properties of this drug delivery system as well as the development of manufacturing processes easily scalable at industrial level

    Forest productivity in southwestern Europe controlled by coupled North Atlantic and Atlantic Multidecadal Oscillations

    Get PDF
    The North Atlantic Oscillation (NAO) depicts annual and decadal oscillatory modes ofvariability responsible for dry spells over the European continent. The NAO therefore holds agreat potential to evaluate the role, as carbon sinks, of water-limited forests under climatechange. However, uncertainties related to inconsistent responses of long-term forestproductivity to NAO have so far hampered firm conclusions on its impacts. We hypothesizethat, in part, such inconsistencies might have their origin in periodical sea surfacetemperature anomalies in the Atlantic Ocean (i.e., Atlantic Multidecadal Oscillation, AMO).Here we show strong empirical evidence in support of this hypothesis using 120 years ofperiodical inventory data from Iberian pine forests. Our results point to AMO+ NAO+ andAMO−NAO− phases as being critical for forest productivity, likely due to decreased winterwater balance and abnormally low winter temperatures, respectively. Our findings could beessential for the evaluation of ecosystem functioning vulnerabilities associated with increasedclimatic anomalies under unprecedented warming conditions in the Mediterranean

    Controlled donation after circulatory death using normothermic regional perfusion does not increase graft fibrosis in the first year posttransplant surveillance biopsy

    Get PDF
    Objectives: The number of kidney transplants obtained from controlled donations after circulatory death is increasing, with long-term outcomes similar to those obtained with donations after brain death. Extraction using normothermic regional perfusion can improve results with controlled donors after circulatory death; however, information on the histological impact and extraction procedure is scarce. Materials and methods: We retrospectively investigated all kidney transplants performed from October 2014 to December 2019, in which a follow-up kidney biopsy had been performed at 1-year follow-up, comparing controlled procedures with donors after circulatory death and normothermic regional perfusion versus donors after brain death. Interstitial fibrosis/tubular atrophy was assessed by adding the values of interstitial fibrosis and tubular atrophy, according to the Banff classification of renal allograft pathology. Results: When we compared histological data from 66 transplants with donations after brain death versus 24 transplants with donations after circulatory death and normothermic regional perfusion, no differences were found in the degree of fibrosis in the 1-year follow-up biopsy (1.7 ± 1.3 vs 1.7 ± 1.1; P = .971) or in the ratio of patients with increased fibrosis calculated as interstitial fibrosis/tubular atrophy >2 (18% vs 13%; P = .522). In our multivariate analysis, which included acute rejection, expanded criteria donation, and the type of donation, no variable was independently related to an increased risk of interstitial fibrosis/tubular atrophy >2. Conclusions: The outcomes of kidney grafts procured in our center using controlled procedures with donors after circulatory death and normothermic regional perfusion were indistinguishable from those obtained from donors after brain death, showing the same degree of fibrosis in the 1-year posttransplant surveillance biopsy. Our data support the conclusion that normothermic regional perfusion should be the method of choice for extraction in donors after circulatory death.This work was sponsored by the Ministry of Science and Innovation, the Carlos III Health Institute and the European Regional Development Fund Research Network for Kidney Diseases (“RedInRen” RD16/0009/0027), and Networks for Cooperative Research Health Results (“RICORS2040” RD21/0005/0010). The authors have no declarations of potential conflicts of interest

    Sera from Patients with NMOSD Reduce the Differentiation Capacity of Precursor Cells in the Central Nervous System

    Get PDF
    Introduction: AQP4 (aquaporin-4)–immunoglobulin G (IgG)-mediated neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that affects the central nervous system, particularly the spinal cord and optic nerve; remyelination capacity in neuromyelitis optica is yet to be determined, as is the role of AQP4–IgG in cell differentiation. Material and Methods: We included three groups—a group of patients with AQP4–IgG-positive neuromyelitis optica, a healthy group, and a sham group. We analyzed differentiation capacity in cultures of neurospheres from the subventricular zone of mice by adding serum at two different times: early and advanced stages of differentiation. We also analyzed differentiation into different cell lines. Results and Conclusions: The effect of sera from patients with NMOSD on precursor cells differs according to the degree of differentiation, and probably affects oligodendrocyte progenitor cells from NG2 cells to a lesser extent than cells from the subventricular zone; however, the resulting oligodendrocytes may be compromised in terms of maturation and possibly limited in their ability to generate myelin. Furthermore, these cells decrease in number with age. It is very unlikely that the use of drugs favoring the migration and differentiation of oligodendrocyte progenitor cells in multiple sclerosis would be effective in the context of neuromyelitis optica, but cell therapy with oligodendrocyte progenitor cells seems to be a potential alternative
    corecore