6 research outputs found

    Antimicrobial Susceptibility Testing of Porcine Bacterial Pathogens: Investigating the prospect of testing a representative drug for each antimicrobial family

    Get PDF
    Antimicrobial susceptibility testing is necessary to carry out antimicrobial stewardship but a limited number of drugs belonging to each antimicrobial family has to be tested for techni- cal limitations and economic resources. In this study, we have determined the minimal inhibitory concentration, using microdilution following international standards (CLSI), for 490 Actinobacillus pleuropneumoniae, 285 Pasteurella multocida, 73 Bordetella bronchiseptica, 398 Streptococcus suis and 1571 Escherichia coli strains from clinical cases collected in Spain between 2018 and 2020. The an- timicrobial susceptibility pattern was deciphered using a principal component analysis for each bacterium and a matrix correlation (high > 0.8, medium 0.5-0.8 and low < 0.5) was obtained for each pair of antimicrobials. No significant associations were observed between MIC patterns for different antimicrobial families, suggesting that co-selection mechanisms are not generally present in these porcine pathogens. However, a high correlation was observed between the fluroquinolones (mar- bofloxacin and enrofloxacin) for all mentioned pathogens and for ceftiofur and cefquinome for E. coli and S. suis. Moreover, a significant association was also observed for tetracyclines (doxycycline and oxytetracycline) and B. bronchiseptica and tildipirosin/tulathromycin for P. multocida. These results suggest that generally, a representative drug per antimicrobial class cannot be selected, however, for some drug-bug combinations, MIC values from one representative drug could be extrapolated to the whole antimicrobial family

    Antimicrobial susceptibility pattern of porcine respiratory bacteria in Spain

    Get PDF
    The monitoring of antimicrobial susceptibility of pig pathogens is critical to optimize antimicrobial treatments and prevent development of resistance with a one-health approach. The aim of this study was to investigate the antimicrobial susceptibility patterns of swine respiratory pathogens in Spain from 2017 to 2019. Bacterial isolation and identification were carried out following standardized methods from samples coming from sacrificed or recently deceased pigs with acute clinical signs compatible with respiratory tract infections. Minimum inhibitory concentration (MIC) values were determined using the broth microdilution method containing a total of 10 and 7-8 antimicrobials/concentrations respectively, in accordance with the recommendations presented by the Clinical and Laboratory Standards Institute (CLSI). The obtained antimicrobial susceptibility varies between pig respiratory pathogens. Actinobacillus pleuropneumoniae (APP) and Pasteurella multocida (PM) were highly susceptible (≥90%) to ceftiofur, florfenicol and macrolides (tilmicosin, tildipirosin and tulathromycin). However, the antimicrobial susceptibility was intermediate (>60% but <90%) for amoxicillin and enrofloxacin in the case of APP and sulfamethoxazole/trimethropim and tiamulin in the case of PM. Both bacteria showed low (<60%) antimicrobial susceptibility to doxycycline. Finally, Bordetella bronchiseptica was highly susceptible only to tildipirosin and tulathromycin (100%) and its susceptibility for florfenicol was close to 50% and <30% for the rest of the antimicrobial families tested. These results emphasize the need of determining antimicrobial susceptibility in pig respiratory cases in order to optimize the antimicrobial treatment in a case-by-case scenario

    Antimicrobial Susceptibility Pattern of Porcine Respiratory Bacteria in Spain

    Get PDF
    [EN] The monitoring of antimicrobial susceptibility of pig pathogens is critical to optimize antimicrobial treatments and prevent development of resistance with a one-health approach. The aim of this study was to investigate the antimicrobial susceptibility patterns of swine respiratory pathogens in Spain from 2017 to 2019. Bacterial isolation and identification were carried out following standardized methods from samples coming from sacrificed or recently deceased pigs with acute clinical signs compatible with respiratory tract infections. Minimum inhibitory concentration (MIC) values were determined using the broth microdilution method containing a total of 10 and 7–8 antimicrobials/concentrations respectively, in accordance with the recommendations presented by the Clinical and Laboratory Standards Institute (CLSI). The obtained antimicrobial susceptibility varies between pig respiratory pathogens. Actinobacillus pleuropneumoniae (APP) and Pasteurella multocida (PM) were highly susceptible (≥90%) to ceftiofur, florfenicol and macrolides (tilmicosin, tildipirosin and tulathromycin). However, the antimicrobial susceptibility was intermediate (>60% but <90%) for amoxicillin and enrofloxacin in the case of APP and sulfamethoxazole/trimethropim and tiamulin in the case of PM. Both bacteria showed low (<60%) antimicrobial susceptibility to doxycycline. Finally, Bordetella bronchiseptica was highly susceptible only to tildipirosin and tulathromycin (100%) and its susceptibility for florfenicol was close to 50% and <30% for the rest of the antimicrobial families tested. These results emphasize the need of determining antimicrobial susceptibility in pig respiratory cases in order to optimize the antimicrobial treatment in a case-by-case scenarioSIThis research received no external fundin

    Antimicrobial Susceptibility Testing of Porcine Bacterial Pathogens: Investigating the Prospect of Testing a Representative Drug for Each Antimicrobial Family

    Get PDF
    Antimicrobial susceptibility testing is necessary to carry out antimicrobial stewardship but a limited number of drugs belonging to each antimicrobial family has to be tested for technical limitations and economic resources. In this study, we have determined the minimal inhibitory concentration, using microdilution following international standards (CLSI), for 490 Actinobacillus pleuropneumoniae, 285 Pasteurella multocida, 73 Bordetella bronchiseptica, 398 Streptococcus suis and 1571 Escherichia coli strains from clinical cases collected in Spain between 2018 and 2020. The antimicrobial susceptibility pattern was deciphered using a principal component analysis for each bacterium and a matrix correlation (high &gt; 0.8, medium 0.5-0.8 and low &lt; 0.5) was obtained for each pair of antimicrobials. No significant associations were observed between MIC patterns for different antimicrobial families, suggesting that co-selection mechanisms are not generally present in these porcine pathogens. However, a high correlation was observed between the fluroquinolones (marbofloxacin and enrofloxacin) for all mentioned pathogens and for ceftiofur and cefquinome for E. coli and S. suis. Moreover, a significant association was also observed for tetracyclines (doxycycline and oxytetracycline) and B. bronchiseptica and tildipirosin/tulathromycin for P. multocida. These results suggest that generally, a representative drug per antimicrobial class cannot be selected, however, for some drug-bug combinations, MIC values from one representative drug could be extrapolated to the whole antimicrobial family.info:eu-repo/semantics/publishedVersio
    corecore