31 research outputs found

    CEP-stable Tunable THz-Emission Originating from Laser-Waveform-Controlled Sub-Cycle Plasma-Electron Bursts

    Full text link
    We study THz-emission from a plasma driven by an incommensurate-frequency two-colour laser field. A semi-classical transient electron current model is derived from a fully quantum-mechanical description of the emission process in terms of sub-cycle field-ionization followed by continuum-continuum electron transitions. For the experiment, a CEP-locked laser and a near-degenerate optical parametric amplifier are used to produce two-colour pulses that consist of the fundamental and its near-half frequency. By choosing two incommensurate frequencies, the frequency of the CEP-stable THz-emission can be continuously tuned into the mid-IR range. This measured frequency dependence of the THz-emission is found to be consistent with the semi-classical transient electron current model, similar to the Brunel mechanism of harmonic generation

    Optimisation of Quantum Trajectories Driven by Strong-field Waveforms

    Get PDF
    Quasi-free field-driven electron trajectories are a key element of strong-field dynamics. Upon recollision with the parent ion, the energy transferred from the field to the electron may be released as attosecond duration XUV emission in the process of high harmonic generation (HHG). The conventional sinusoidal driver fields set limitations on the maximum value of this energy transfer, and it has been predicted that this limit can be significantly exceeded by an appropriately ramped-up cycleshape. Here, we present an experimental realization of such cycle-shaped waveforms and demonstrate control of the HHG process on the single-atom quantum level via attosecond steering of the electron trajectories. With our optimized optical cycles, we boost the field-ionization launching the electron trajectories, increase the subsequent field-to-electron energy transfer, and reduce the trajectory duration. We demonstrate, in realistic experimental conditions, two orders of magnitude enhancement of the generated XUV flux together with an increased spectral cutoff. This application, which is only one example of what can be achieved with cycle-shaped high-field light-waves, has farreaching implications for attosecond spectroscopy and molecular self-probing

    Competition–colonization trade-offs in a ciliate model community

    Get PDF
    There is considerable theoretical evidence that a trade-off between competitive and colonization ability enables species coexistence. However, empirical studies testing for the presence of a competition–colonization (CC) trade-off and its importance for species coexistence have found mixed results. In a microcosm experiment, we looked for a CC trade-off in a community of six benthic ciliate species. For each species, we measured the time needed to actively disperse to and colonize an empty microcosm. By measuring dispersal rates and growth rates of the species, we were able to differentiate between these two important components of colonization ability. Competitive ability was investigated by comparing species’ growth with or without a competitor in all pairwise species combinations. Species significantly differed in their colonization abilities, with good colonizers having either high growth rates or high dispersal rates or both. Although species showed a clear competitive hierarchy, competitive and colonization ability were uncorrelated. The weakest competitors were also the weakest colonizers, and the strongest competitor was an intermediate colonizer. However, some of the inferior competitors had higher colonization abilities than the strongest competitor, indicating that a CC trade-off may enable coexistence for a subset of the species. Absence of a community-wide CC trade-off may be based on the lack of strong relationships between the traits underlying competitive and colonization ability. We show that temporal effects and differential resource use are alternative mechanisms of coexistence for the species that were both slow colonizers and poor competitors

    Culture and practice of inclusive education in Lithuanian school: the students’ perspective

    No full text
    The aim of this study was to look at the processes of inclusive education in the eyes of the students, without distinguishing them by age, gender, socio-cultural factors, disability, etc., and give them a voice and an opportunity to express their views about the barriers and the recourses for inclusive school culture and practice. 3761 students from 3-12 grades participated in the survey. From the students' point of view, it was found that main barriers for inclusive school culture and practice were: noisy physical environment at school, bullying; inefficient organization of teaching, too difficult and irrelevant learning content; students’ intolerance to diversity and segregationist and discriminatory attitudes toward peers who do not conform to “normality” standards; not managed discipline and behavioural problems in the classroom, discrimination and the practice of exclusion of some groups of pupil; lack of teachers’ respectful and equal communication, cooperation, lack of effective teaching competences. Resources of the inclusive school culture and practice are: assurance of a favourable physical and emotional environment; organization of education, when the curriculum corresponds to the student’s abilities, interests and is available to everyone; students are provided with the opportunity to build friendship relationships, and acknowledge diversity; students’ involvement in decision-makingEdukologijos tyrimų institutasVytauto Didžiojo universitetasŠiaulių universiteta

    Reorientational dynamics of organic cations in perovskite-like coordination polymers

    No full text
    Here we report the dynamics of organic cations as guest molecules in a perovskite host-framework. The molecular motion of CH3NH3+ (MAFe), (CH3)2NH2+ (DMAFe) and (CH3)3NH+ (TrMAFe) in the cage formed by KFe(CN)63− units was studied using a combination of experimental methods: (i) thermal analysis, (ii) dielectric and electric studies, (iii) optical observations, (iv) EPR and 1H NMR spectroscopy and (v) quasielastic neutron scattering (QENS). In the case of MAFe and TrMAFe, the thermal analysis reveals one solid-to-solid phase transition (PT) and two PTs for the DMAFe crystal. A markedly temperature-dependent dielectric constant indicates the tunable and switchable properties of the complexes. Also, their semiconducting properties are confirmed by a dc conductivity measurement. The broadband dielectric relaxation is analyzed for the TrMAFe sample in the frequency range of 100 Hz–1 GHz. QENS shows that we deal rather with the localized motion of the cation than a diffusive one. Three models, which concern the simultaneous rotation of the CH3 and/or NH3 group, π-flips and free rotations of the organic cation, are used to fit the elastic incoherent structure factor. The 1H NMR spin–lattice relaxation time for all compounds under study, as well as the second moments, has been measured in a wide temperature range. In all studied samples, the temperature dependence of the second moment of the proton NMR line indicated the gradual evolution of the molecular movements from the rigid state up to a highly disordered on

    Bendrojo ugdymo mokyklos veiklos kokybės įsivertinimo rekomendacijos

    No full text
    Projekto „Kokybės vadybos stiprinimas bendrojo ugdymo mokyklose (modelių sukūrimas)“ leidinysVytauto Didžiojo universitetasŠvietimo akademij

    Bendrojo ugdymo mokyklos veiklos kokybės įsivertinimo modelis ir rodiklių sistema

    No full text
    Projekto „Kokybės vadybos stiprinimas bendrojo ugdymo mokyklose (modelių sukūrimas)“ leidinysVytauto Didžiojo universitetasŠvietimo akademij

    3D printing hybrid organometallic polymer-based biomaterials via laser two-photon polymerization

    No full text
    Materials with microscale structures are gaining increasing interest due to their range of technical and medical applications. Additive manufacturing approaches to such objects via laser two-photon polymerization, also known as multiphoton fabrication, enable the creation of new materials with diverse and tunable properties. Here, we investigate the properties of 3D structures composed of organometallic polymers incorporating aluminium, titanium, vanadium and zirconium. The organometallic polymer-based materials were analysed using a variety of techniques including SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy analysis and contact angle measurements and their biocompatibility was tested in vitro. Cell viability and mode of death were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and acridine orange/ethidium bromide staining. Polymers incorporating Al, Ti and Zr supported cell adhesion and proliferation, and showed low toxicity in vitro, whereas the organometallic polymer incorporating V was shown to be cytotoxic. Inductively coupled plasma optical emission spectrometry suggested that leaching of the V from the organometallic polymer is the likely cause of this. The preparation of the organometallic polymers is straightforward and both simple 2D and complex 3D structures can be fabricated with ease. Resolution tests of the newly developed organometallic polymer incorporating Al show that suspended lines with widths down to 200 nm can be fabricated. We believe that the materials described in this work show promising properties for the development of objects with sub-micron features for biomedical applications (e.g. biosensors, drug delivery devices, tissue scaffolds etc.). © 2019 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2019 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry
    corecore