9,628 research outputs found
Polarization effects on the effective temperature of an ultracold electron source
The influence has been studied of the ionization laser polarization on the
effective temperature of an ultracold electron source, which is based on
near-threshold photoionization. This source is capable of producing both
high-intensity and high-coherence electron pulses, with applications in for
example electron diffraction experiments. For both nanosecond and femtosecond
photoionization, a sinusoidal dependence of the temperature on polarization
angle has been found. For most experimental conditions, the temperature is
minimal when the polarization coincides with the direction of acceleration.
However, surprisingly, for nanosecond ionization a regime exists when the
temperature is minimal when the polarization is perpendicular to the
acceleration direction. This shows that in order to create electron bunches
with the highest transverse coherence length, it is important to control the
polarization of the ionization laser. The general trends and magnitudes of the
temperature measurements are described by a model, based on the analysis of
classical electron trajectories; this model further deepens our understanding
of the internal mechanisms during the photoionization process. Furthermore, for
nanosecond ionization, charge oscillations as a function of laser polarization
have been observed; for most situations the oscillation amplitude is small
A Denotational Semantics for First-Order Logic
In Apt and Bezem [AB99] (see cs.LO/9811017) we provided a computational
interpretation of first-order formulas over arbitrary interpretations. Here we
complement this work by introducing a denotational semantics for first-order
logic. Additionally, by allowing an assignment of a non-ground term to a
variable we introduce in this framework logical variables.
The semantics combines a number of well-known ideas from the areas of
semantics of imperative programming languages and logic programming. In the
resulting computational view conjunction corresponds to sequential composition,
disjunction to ``don't know'' nondeterminism, existential quantification to
declaration of a local variable, and negation to the ``negation as finite
failure'' rule. The soundness result shows correctness of the semantics with
respect to the notion of truth. The proof resembles in some aspects the proof
of the soundness of the SLDNF-resolution.Comment: 17 pages. Invited talk at the Computational Logic Conference (CL
2000). To appear in Springer-Verlag Lecture Notes in Computer Scienc
Thomson scattering in a low-pressure neon mercury positive column
The electron density and the electron temperature in a low-pressure neon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 10 mbar of neon, a mercury pressure inbetween 0.14 and 0.85 Pa, and an electric current ranging from 100 to 400 mA. The systematic error in the electron density is 15%–45%, the statistical error is 25%–35%. The total error in the electron temperature is 15%–35%. ©2001 American Institute of Physics
Spectral geometry as a probe of quantum spacetime
Employing standard results from spectral geometry, we provide strong evidence
that in the classical limit the ground state of three-dimensional causal
dynamical triangulations is de Sitter spacetime. This result is obtained by
measuring the expectation value of the spectral dimension on the ensemble of
geometries defined by these models, and comparing its large scale behaviour to
that of a sphere (Euclidean de Sitter). From the same measurement we are also
able to confirm the phenomenon of dynamical dimensional reduction observed in
this and other approaches to quantum gravity -- the first time this has been
done for three-dimensional causal dynamical triangulations. In this case, the
value for the short-scale limit of the spectral dimension that we find is
approximately 2. We comment on the relevance of these results for the
comparison to asymptotic safety and Horava-Lifshitz gravity, among other
approaches to quantum gravity.Comment: 25 pages, 6 figures. Version 2: references to figures added,
acknowledgment added
Tracer Measurements in Growing Sea Ice Support Convective Gravity Drainage Parameterizations
Gravity drainage is the dominant process redistributing solutes in growing sea ice. Modeling gravity drainage is therefore necessary to predict physical and biogeochemical variables in sea ice. We evaluate seven gravity drainage parameterizations, spanning the range of approaches in the literature, using tracer measurements in a sea ice growth experiment. Artificial sea ice is grown to around 17 cm thickness in a new experimental facility, the Roland von Glasow air‐sea‐ice chamber. We use NaCl (present in the water initially) and rhodamine (injected into the water after 10 cm of sea ice growth) as independent tracers of brine dynamics. We measure vertical profiles of bulk salinity in situ, as well as bulk salinity and rhodamine in discrete samples taken at the end of the experiment. Convective parameterizations that diagnose gravity drainage using Rayleigh numbers outperform a simpler convective parameterization and diffusive parameterizations when compared to observations. This study is the first to numerically model solutes decoupled from salinity using convective gravity drainage parameterizations. Our results show that (1) convective, Rayleigh number‐based parameterizations are our most accurate and precise tool for predicting sea ice bulk salinity; and (2) these parameterizations can be generalized to brine dynamics parameterizations, and hence can predict the dynamics of any solute in growing sea ic
The Vector Meson Form Factor Analysis in Light-Front Dynamics
We study the form factors of vector mesons using a covariant fermion field
theory model in dimensions. Performing a light-front calculation in the
frame in parallel with a manifestly covariant calculation, we note the
existence of a nonvanishing zero-mode contribution to the light-front current
and find a way of avoiding the zero-mode in the form factor calculations.
Upon choosing the light-front gauge (\ep^+_{h=\pm}=0) with circular
polarization and with spin projection , only the
helicity zero to zero matrix element of the plus current receives zero-mode
contributions. Therefore, one can obtain the exact light-front solution of the
form factors using only the valence contribution if only the helicity
components, , and , are used. We also compare our
results obtained from the light-front gauge in the light-front helicity basis
(i.e. ) with those obtained from the non-LF gauge in the instant form
linear polarization basis (i.e. ) where the zero-mode contributions to
the form factors are unavoidable.Comment: 33 pages; typo in Eq.(15) is corrected; comment on Ref.[9] is
corrected; version to appear in Phys. Rev.
- …