8,657 research outputs found

    A failure management prototype: DR/Rx

    Get PDF
    This failure management prototype performs failure diagnosis and recovery management of hierarchical, distributed systems. The prototype, which evolved from a series of previous prototypes following a spiral model for development, focuses on two functions: (1) the diagnostic reasoner (DR) performs integrated failure diagnosis in distributed systems; and (2) the recovery expert (Rx) develops plans to recover from the failure. Issues related to expert system prototype design and the previous history of this prototype are discussed. The architecture of the current prototype is described in terms of the knowledge representation and functionality of its components

    Atomic radius and charge parameter uncertainty in biomolecular solvation energy calculations

    Full text link
    Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is under-determined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a new method for quantifying this uncertainty in implicit solvation calculations of small molecules using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many more types of atomic charges; therefore, construction of surrogate models for the charge parameter space requires compressed sensing combined with an iterative rotation method to enhance problem sparsity. We demonstrate the application of the method by presenting results for the uncertainties in small molecule solvation energies based on these approaches. The method presented in this paper is a promising approach for efficiently quantifying uncertainty in a wide range of force field parameterization problems, including those beyond continuum solvation calculations.The intent of this study is to provide a way for developers of implicit solvent model parameter sets to understand the sensitivity of their target properties (solvation energy) on underlying choices for solute radius and charge parameters

    Lattice Monte Carlo calculations for unitary fermions in a finite box

    Get PDF
    We perform lattice Monte Carlo simulations for up to 66 unitary fermions in a finite box using a highly improved lattice action for nonrelativistic spin 1/2 fermions. We obtain a value of 0.366āˆ’0.011+0.0160.366^{+0.016}_{-0.011} for the Bertsch parameter, defined as the energy of the unitary Fermi gas measured in units of the free gas energy in the thermodynamic limit. In addition, for up to four unitary fermions, we compute the spectrum of the lattice theory by exact diagonalization of the transfer matrix projected onto irreducible representations of the octahedral group for small to moderate size lattices, providing an independent check of our few-body simulation results. We compare our exact numerical and simulation results for the spectrum to benchmark studies of other research groups, as well as perform an extended analysis of our lattice action improvement scheme, including an analysis of the errors associated with higher partial waves and finite temporal discretization.Comment: Significant revisions from previous version. Included data at a larger volume and performed an infinite volume extrapolation of the Bertsch parameter. Published versio

    Analytic Reconstruction of heavy-quark two-point functions at O(\alpha_s^3)

    Full text link
    Using a method previously developed, based on the Mellin-Barnes transform, we reconstruct the two-point correlators in the vector, axial, scalar and pseudoscalar channels from the Taylor expansion at q^2=0, the threshold expansion at q^2=4m^2 and the OPE at q^2\rightarrow -\infty, where m is the heavy quark mass. The reconstruction is analytic and systematic and is controlled by an error function which becomes smaller as more terms in those expansions are known.Comment: 19 pages, 11 figure

    Assessing housing quality and its impact on health, safety and sustainability

    Get PDF
    Background The adverse health and environmental effects of poor housing quality are well established. A central requirement for evidence-based policies and programmes to improve housing standards is a valid, reliable and practical way of measuring housing quality that is supported by policy agencies, the housing sector, researchers and the public. Methods This paper provides guidance on the development of housing quality-assessment tools that link practical measures of housing conditions to their effects on health, safety and sustainability, with particular reference to tools developed in New Zealand and England. Results The authors describe how information on housing quality can support individuals, agencies and the private sector to make worthwhile improvements to the health, safety and sustainability of housing. The information gathered and the resultant tools developed should be guided by the multiple purposes and end users of this information. Other important issues outlined include deciding on the scope, detailed content, practical administration issues and how the information will be analysed and summarised for its intended end users. There are likely to be considerable benefits from increased international collaboration and standardisation of approaches to measuring housing hazards. At the same time, these assessment approaches need to consider local factors such as climate, geography, culture, predominating building practices, important housing-related health issues and existing building codes. Conclusions An effective housing quality-assessment tool has a central role in supporting improvements to housing. The issues discussed in this paper are designed to motivate and assist the development of such tools

    Thin film superfluid optomechanics

    Full text link
    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid 4^4He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates g0>2Ļ€Ć—100g_0>2\pi \times 100 kHz and single photon cooperativities C0>10C_0>10 are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as g0>Ī©Mg_0>\Omega_M and opens the prospect of laser cooling a liquid into its quantum ground state.Comment: 18 pages, 6 figure

    Systems and Methods for Image Guided Surgery

    Get PDF
    Systems and methods for image guided surgery are disclosed herein. An example method can include: receiving a plurality of 2D projection images of an object at a plurality of projection angles during a first period of time; and receiving a position of an instrument relative to a tracking coordinate system during the first period of time. The method can also include registering the plurality of 2D projection images relative to the tracking coordinate system to obtain a transformation function that defines a relationship between a coordinate system of the plurality of 2D projection images and the tracking coordinate system; receiving an adjusted position of the instrument relative to the tracking coordinate system during a second period of time that is subsequent to the first period of time; and estimating an adjusted position of the instrument relative to the plurality of 2D projection images using the transformation function

    A modified Oster-Murray-Harris mechanical model of morphogenesis

    Get PDF
    There are two main modeling paradigms for biological pattern formation in developmental biology: chemical prepattern models and cell aggregation models. This paper focuses on an example of a cell aggregation model, the mechanical model developed by Oster, Murray, and Harris [Development, 78 (1983), pp. 83--125]. We revisit the Oster--Murray--Harris model and find that, due to the infinitesimal displacement assumption made in the original version of this model, there is a restriction on the types of boundary conditions that can be prescribed. We derive a modified form of the model which relaxes the infinitesimal displacement assumption. We analyze the dynamics of this model using linear and multiscale nonlinear analysis and show that it has the same linear behavior as the original Oster--Murray--Harris model. Nonlinear analysis, however, predicts that the modified model will allow for a wider range of parameters where the solution evolves to a bounded steady state. The results from both analyses are verified through numerical simulations of the full nonlinear model in one and two dimensions. The increased range of boundary conditions that are well-posed, as well as a wider range of parameters that yield bounded steady states, renders the modified model more applicable to, and more robust for, comparisons with experiments
    • ā€¦
    corecore