373 research outputs found
Retroviruses in the common brush-tailed possum (Trichosurus vulpecula)
This study details the search for, and characterisation of, retroviruses in a marsupial, the common brush-tailed possum (Trichosurus vulpecula). Initial efforts were directed at detecting exogenous retroviruses in possums, but the majority of the work described in this thesis involved the isolation and characterisation of a possum endogenous retrovirus.
Endogenous retroviruses were detected in possum genomic DNA by PCR amplification using degenerate primers derived from the retroviral pol gene. Cloning, sequencing, and analysis of these PCR products revealed the presence of several families of endogenous retroviruses in the possum genome.
Reverse transcriptase activity was detected in the blood of all possums tested using the product enhanced reverse transcriptase (PERT) assay. RT-PCR was performed on RNA isolated from possum blood plasma using the pol-derived degenerate primers. Cloning and sequencing of the products indicated that a homogeneous retroviral RNA species was present in the blood of possums, and that this RNA was related to, but not identical to, the endogenous possum retroviruses already detected.
A 3'-RACE approach was used to amplify the majority of the 3' end of the possum retroviral RNA. The subsequent discovery that this RNA species was derived from an endogenous retrovirus in the possum genome allowed amplification of the remainder of the genome by a combination of PCR, single primer PCR, and RT-PCR. The sequences were assembled into a contiguous sequence, the TvERV-K1 contig. In addition, a near-full-length TvERV-K1-related fragment, was amplified from possum genomic DNA, cloned, and sequenced. It was named pTvERV-K2. The TvERV-K elements are the first full-length marsupial retrovirus sequences to be reported.
Analysis of the sequences of the TvERV-K1 contig and pTvERV-K2 revealed most of the regulatory regions required for replication of a retroviral genome, as well as uninterrupted, or minimally interrupted, open reading frames (ORFs) for the gag, pro, and pol genes. Only a short region of sequence with homology to the Env proteins of other retroviruses was detected. All of the TvERV-K proteins displayed highest homology to those of the simian type D retroviruses. Likewise, phylogenetic analysis using the deduced amino acid sequences of the Pro and Pol proteins, placed the possum endogenous retrovirus with the exogenous and endogenous type D retroviruses of Old World and New World monkeys. Thus, a cross-species transmission event - from marsupials to primates, from primates to marsupials, or from an unidentified source to both marsupials and primates - appears to have occurred.
There are 15-20 copies of the TvERV-K element in the possum genome, as determined by Southern hybridisation. However, integration sites appeared to be variable between possums, suggesting recent (or ongoing) retrotranspositional activity. Both PCR and Southern hybridisation analyses suggest that TvERV-K elements shorter than those from which the TvERV-K1 contig and pTvERV-K2 were derived are present in the possum genome.
The implications of these findings are discussed
The in vivo comparison of invasive and non-invasive assessments of pulmonary vessel haemodynamics and vasoreactivity in patients with known or suspected pulmonary arterial hypertension: a cardiac magnetic resonance imaging study
Thesis (Ph.D.) -- University of Adelaide, Adelaide Medical School, 201
CRIg-expressing peritoneal macrophages are associated with disease severity in patients with cirrhosis and ascites
Infections are an important cause of morbidity and mortality in patients with decompensated cirrhosis and ascites. Hypothesizing that innate immune dysfunction contributes to susceptibility to infection, we assessed ascitic fluid macrophage phenotype and function. The expression of complement receptor of the immunoglobulin superfamily (CRIg) and CCR2 defined two phenotypically and functionally distinct peritoneal macrophage subpopulations. The proportion of CRIg(hi) macrophages differed between patients and in the same patient over time, and a high proportion of CRIg(hi) macrophages was associated with reduced disease severity (model for end-stage liver disease) score. As compared with CRIg(lo) macrophages, CRIg(hi) macrophages were highly phagocytic and displayed enhanced antimicrobial effector activity. Transcriptional profiling by RNA sequencing and comparison with human macrophage and murine peritoneal macrophage expression signatures highlighted similarities among CRIg(hi) cells, human macrophages, and mouse F4/80(hi) resident peritoneal macrophages and among CRIg(lo) macrophages, human monocytes, and mouse F4/80lo monocyte-derived peritoneal macrophages. These data suggest that CRIg(hi) and CRIg(lo) macrophages may represent a tissue-resident population and a monocytederived population, respectively. In conclusion, ascites fluid macrophage subset distribution and phagocytic capacity is highly variable among patients with chronic liver disease. Regulating the numbers and/or functions of these macrophage populations could provide therapeutic opportunities in cirrhotic patients
Quality of Life in Chronic Pancreatitis is Determined by Constant Pain, Disability/Unemployment, Current Smoking, and Associated Co-Morbidities
OBJECTIVES: Chronic pancreatitis (CP) has a profound independent effect on quality of life (QOL). Our aim was to identify factors that impact the QOL in CP patients. METHODS: We used data on 1,024 CP patients enrolled in the three NAPS2 studies. Information on demographics, risk factors, co-morbidities, disease phenotype, and treatments was obtained from responses to structured questionnaires. Physical and mental component summary (PCS and MCS, respectively) scores generated using responses to the Short Form-12 (SF-12) survey were used to assess QOL at enrollment. Multivariable linear regression models determined independent predictors of QOL. RESULTS: Mean PCS and MCS scores were 36.7+/-11.7 and 42.4+/-12.2, respectively. Significant (P \u3c 0.05) negative impact on PCS scores in multivariable analyses was noted owing to constant mild-moderate pain with episodes of severe pain or constant severe pain (10 points), constant mild-moderate pain (5.2), pain-related disability/unemployment (5.1), current smoking (2.9 points), and medical co-morbidities. Significant (P \u3c 0.05) negative impact on MCS scores was related to constant pain irrespective of severity (6.8-6.9 points), current smoking (3.9 points), and pain-related disability/unemployment (2.4 points). In women, disability/unemployment resulted in an additional 3.7 point reduction in MCS score. Final multivariable models explained 27% and 18% of the variance in PCS and MCS scores, respectively. Etiology, disease duration, pancreatic morphology, diabetes, exocrine insufficiency, and prior endotherapy/pancreatic surgery had no significant independent effect on QOL. CONCLUSIONS: Constant pain, pain-related disability/unemployment, current smoking, and concurrent co-morbidities significantly affect the QOL in CP. Further research is needed to identify factors impacting QOL not explained by our analyses
QCD with dynamical Wilson fermions
We present results from a study of QCD with two flavors of Wilson fermions using the hybrid Monte Carlo algorithm, which incorporates the effects of fermion loops exactly. We evaluate the performance of the algorithm and its potential for large-scale computations. We argue that in the best case the algorithm slows down as V^(5/4)mq^(-13/4) at a fixed gauge coupling. We present improved algorithms for calculating the inverse and the determinant of the Wilson fermion operator. Results for the finite-temperature transition on 4×6^3 and 6×8^3 lattices are presented at β=5.2-5.6. We also give Wilson loop expectation values obtained on 84 lattices at β=5.3 for six values of κ. The data show evidence for screening in the qq̅ potential. Lastly, on comparing Wilson and staggered-fermion results we find that β=5.3 is far from the scaling region
Mechanisms of CFTR Functional Variants That Impair Regulated Bicarbonate Permeation and Increase Risk for Pancreatitis but Not for Cystic Fibrosis
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.Fil: LaRusch, Jessica. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Jung, Jinsei. Yonsei University College of Medicine; Corea del SurFil: General, Ignacio. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lewis, Michele D.. Mayo Clinic. Division of Gastroenterology and Hepatology; Estados UnidosFil: Park, Hyun Woo. Yonsei University College of Medicine; Corea del SurFil: Brand, Randall E.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Gelrud, Andres. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Anderson, Michelle A.. University of Michigan; Estados UnidosFil: Banks, Peter A.. Brigham and Women’s Hospital. Division of Gastroenterology; Estados UnidosFil: Conwell, Darwin. Brigham and Women’s Hospital. Division of Gastroenterology; Estados UnidosFil: Lawrence, Christopher. Medical University of South Carolina; Estados UnidosFil: Romagnuolo, Joseph. Medical University of South Carolina; Estados UnidosFil: Baillie, John. University of Duke; Estados UnidosFil: Alkaade, Samer. St. Louis University. School of Medicine; Estados UnidosFil: Cote, Gregory. Indiana University; Estados UnidosFil: Gardner, Timothy B.. Dartmouth-Hitchcock Medical Center; Estados UnidosFil: Amann, Stephen T.. North Mississippi Medical Center; Estados UnidosFil: Slivka, Adam. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Sandhu, Bimaljit. Virginia Commonwealth University Medical Center; Estados UnidosFil: Aloe, Amy. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Kienholz, Michelle L.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Yadav, Dhiraj. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Barmada, M. Michael. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Bahar, Ivet. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Lee, Min Goo. Yonsei University College of Medicine; Corea del SurFil: Whitcomb, David C.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: North American Pancreatitis Study Group. No especifica
Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies
The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity
Lipidomics Reveals Early Metabolic Changes in Subjects with Schizophrenia: Effects of Atypical Antipsychotics
There is a critical need for mapping early metabolic changes in schizophrenia to capture failures in regulation of biochemical pathways and networks. This information could provide valuable insights about disease mechanisms, trajectory of disease progression, and diagnostic biomarkers. We used a lipidomics platform to measure individual lipid species in 20 drug-naïve patients with a first episode of schizophrenia (FE group), 20 patients with chronic schizophrenia that had not adhered to prescribed medications (RE group), and 29 race-matched control subjects without schizophrenia. Lipid metabolic profiles were evaluated and compared between study groups and within groups before and after treatment with atypical antipsychotics, risperidone and aripiprazole. Finally, we mapped lipid profiles to n3 and n6 fatty acid synthesis pathways to elucidate which enzymes might be affected by disease and treatment. Compared to controls, the FE group showed significant down-regulation of several n3 polyunsaturated fatty acids (PUFAs), including 20:5n3, 22:5n3, and 22:6n3 within the phosphatidylcholine and phosphatidylethanolamine lipid classes. Differences between FE and controls were only observed in the n3 class PUFAs; no differences where noted in n6 class PUFAs. The RE group was not significantly different from controls, although some compositional differences within PUFAs were noted. Drug treatment was able to correct the aberrant PUFA levels noted in FE patients, but changes in re patients were not corrective. Treatment caused increases in both n3 and n6 class lipids. These results supported the hypothesis that phospholipid n3 fatty acid deficits are present early in the course of schizophrenia and tend not to persist throughout its course. These changes in lipid metabolism could indicate a metabolic vulnerability in patients with schizophrenia that occurs early in development of the disease. © 2013 McEvoy et al
Bile acids targeted metabolomics and medication classification data in the ADNI1 and ADNIGO/2 cohorts
Alzheimer’s disease (AD) is the most common cause of dementia. The mechanism of disease development and progression is not well understood, but increasing evidence suggests multifactorial etiology, with a number of genetic, environmental, and aging-related factors. There is a growing body of evidence that metabolic defects may contribute to this complex disease. To interrogate the relationship between system level metabolites and disease susceptibility and progression, the AD Metabolomics Consortium (ADMC) in partnership with AD Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for patients in the ADNI1 cohort. We used the Biocrates Bile Acids platform to evaluate the association of metabolic levels with disease risk and progression. We detail the quantitative metabolomics data generated on the baseline samples from ADNI1 and ADNIGO/2 (370 cognitively normal, 887 mild cognitive impairment, and 305 AD). Similar to our previous reports on ADNI1, we present the tools for data quality control and initial analysis. This data descriptor represents the third in a series of comprehensive metabolomics datasets from the ADMC on the ADNI
- …