13 research outputs found

    Hyperpolarizability effects in a Sr optical lattice clock

    Full text link
    We report the observation of the higher order frequency shift due to the trapping field in a 87^{87}Sr optical lattice clock. We show that at the magic wavelength of the lattice, where the first order term cancels, the higher order shift will not constitute a limitation to the fractional accuracy of the clock at a level of 101810^{-18}. This result is achieved by operating the clock at very high trapping intensity up to 400400 kW/cm2^2 and by a specific study of the effect of the two two-photon transitions near the magic wavelength

    An accurate optical lattice clock with 87Sr atoms

    Get PDF
    We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879 (5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. Two previous measurements of this transition were found to disagree by about 2x10^{-13}, i.e. almost four times the combined error bar, instilling doubt on the potential of optical lattice clocks to perform at a high accuracy level. In perfect agreement with one of these two values, our measurement essentially dissipates this doubt

    Accuracy Evaluation of an Optical Lattice Clock with Bosonic Atoms

    Full text link
    We report the first accuracy evaluation of an optical lattice clock based on the 1S0 - 3P0 transition of an alkaline earth boson, namely 88Sr atoms. This transition has been enabled using a static coupling magnetic field. The clock frequency is determined to be 429 228 066 418 009(32) Hz. The isotopic shift between 87Sr and 88Sr is 62 188 135 Hz with fractional uncertainty 5.10^{-7}. We discuss the conditions necessary to reach a clock accuracy of 10^{-17} or less using this scheme.Comment: 3 pages, 4 figures, uses ol.sty fil

    Horloge à réseau optique à atomes de Strontium

    No full text
    This thesis presents the latest achievements regarding the optical lattice clock with Strontium atoms developed at LNE-SYRTE. After a review of the different types of optical clocks that are currently under development, we stress on the concept of optical lattice clock which was first imagined for 87Sr using the 1S0 - 3P0 transition. We exhibit the features of this atom, in particular the concept of magic wavelength for the trap, and the achievable performances for this kind of clock. The second part presents the experimental aspects, insisting particularly on the ultra-stable laser used for the interrogation of the atoms which is a central part of the experiment. Among the latest improvements, an optical pumping phase and an interrogation phase using a magnetic field have been added in order to refine the evaluation of the Zeeman effect. Finally, the last part presents the experimental results. The last evaluation of the clock using 87Sr atoms allowed us to reach a frequency accuracy of 2,6.10-15 and a measurement in agreement with the one made at JILA at the 10-15 level. On another hand, thanks to recent theoretical proposals, we made a measurement using the bosonic isotope 88Sr by adapting the experimental setup. This measurement represents the first evaluation for this type of clock, with a frequency accuracy of 7.10-14.Ce mémoire présente les dernières avancées de l'horloge à réseau optique à atomes de Strontium du LNE-SYRTE. Après avoir passé en revue les différents types d'horloges optiques actuellement développées, l'accent est mis sur le concept d'horloge à réseau optique qui a d'abord été formulé dans le cadre d'une horloge à 87Sr utilisant la transition 1S0 - 3P0. Les particularités de cet atome sont présentées, notamment la notion de longueur d'onde magique de piégeage, ainsi que les performances qui sont envisageables pour une telle horloge. La deuxième partie présente les aspects expérimentaux, en insistant plus particulièrement sur le développement du laser ultra-stable qui est utilisé pour l'interrogation des atomes et qui représente un point central. Parmi les dernières améliorations, une phase de pompage optique et d'interrogation en présence d'un champ magnétique a été ajoutée au dispositif de manière à mieux déterminer l'effet Zeeman. Enfin, la dernière partie présente les résultats expérimentaux. La dernière évaluation de l'horloge à 87Sr a permis d'atteindre une exactitude de 2,6.10-15 et une mesure en accord au niveau de 10-15 avec une évaluation indépendante faite au JILA. D'autre part, suite à de récentes propositions théoriques, une mesure a également été effectuée en utilisant l'isotope bosonique 88Sr et en adaptant le dispositif expérimental, permettant d'obtenir la première évaluation pour ce type d'horloge, avec une exactitude de 7.10-14

    Horloge à réseau optique à atomes de Strontium

    No full text
    Ce mémoire présente les dernières avancées de l'horloge à réseau optique à atomes de Strontium du LNE-SYRTE. Après avoir passé en revue les différents types d'horloges optiques actuellement développées, l'accent est mis sur le concept d'horloge à réseau optique qui a d'abord été formulé dans le cadre d'une horloge à 87Sr utilisant la transition 1S0 - 3P0. Les particularités de cet atome sont présentées, notamment la notion de longueur d'onde magique de piégeage, ainsi que les performances qui sont envisageables pour une telle horloge. La deuxième partie présente les aspects expérimentaux, en insistant plus particulièrement sur le développement du laser ultra-stable qui est utilisé pour l'interrogation des atomes et qui représente un point central. Parmi les dernières améliorations, une phase de pompage optique et d'interrogation en présence d'un champ magnétique a été ajoutée au dispositif de manière à mieux déterminer l'effet Zeeman. Enfin, la dernière partie présente les résultats expérimentaux. La dernière évaluation de l'horloge à 87Sr a permis d'atteindre une exactitude de 2,6.10-15 et une mesure en accord au niveau de 10-15 avec une évaluation indépendante faite au JILA. D'autre part, suite à de récentes propositions théoriques, une mesure a également été effectuée en utilisant l'isotope bosonique 88Sr et en adaptant le dispositif expérimental, permettant d'obtenir la première évaluation pour ce type d'horloge, avec une exactitude de 7.10-14.PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Interference-filter-stabilized external-cavity diode lasers

    No full text
    International audienceWe have developed external cavity diode lasers, where the wavelength selection is assured by a low loss interference filter instead of the common diffraction grating. The filter allows a linear cavity design reducing the sensitivity of the wavelength and the external cavity feedback against misalignment. By separating the feedback and wavelength selection functions, both can be optimized independently leading to an increased tunability of the laser. The design is employed for the generation of laser light at 698, 780 and 852 nm. Its characteristics make it a well suited candidate for space-born lasers

    Liquid phase epitaxy growth and visible emission of Tb3+,Gd3+:LiYF4 layers

    No full text
    Single-crystalline layers of 12 at.% Tb3+, 5 at.% Gd3+:LiYF4 were grown by the liquid phase epitaxy method on (001) oriented bulk undoped LiYF4 substrates using LiF as a solvent. The growth temperature was 737-740°C, the growth duration was 15-25 min, and the layer thickness was 40-90 µm. The structural, morphological, vibronic and spectroscopic properties of the layers were studied. Tb3+ ions were uniformly distributed in the layers with no diffusion into the substrate. Polarized Raman spectroscopy confirmed the orientation of the layers (growth along the [001] direction). Under excitation in the blue, the layers exhibited intense green emission. For the 5D4→7F5 Tb3+ transition, the peak stimulated-emission cross-section is 1.28×10−21 cm² at 542.0 nm for π-polarization. The luminescence lifetime of the 5D4 Tb3+ state is 5.05 ms at room temperature. The crystal-field splitting of Tb3+ multiplets was determined at low temperature. The developed epitaxies are promising for green and yellow waveguide lasers

    An optical lattice clock with spin-polarized 87Sr atoms

    No full text
    International audienceWe present a new evaluation of an <SUP>87</SUP>Sr optical lattice clock using spin polarized atoms. The frequency of the <SUP>1</SUP>S<SUB>0</SUB>--><SUP>3</SUP>P<SUB>0</SUB> clock transition is found to be 429 228 004 229 873.6 Hz with a fractional uncertainty of 2.6×10<SUP>-15</SUP>, a value that is comparable to the frequency difference between the various primary standards throughout the world. This measurement is in excellent agreement with a previous one of similar accuracy [Phys. Rev. Lett. 98, 083002 (2007)]
    corecore