20,378 research outputs found

    Oscillating chiral currents in nanotubes: a route to nanoscale magnetic test tubes

    Get PDF
    With a view to optimising the design of carbon-nanotube (CNT) windmills and to maximising the internal magnetic field generated by chiral currents, we present analytical results for the group velocity components of an electron flux through chiral carbon nanotubes. Chiral currents are shown to exhibit a rich behaviour and can even change sign and oscillate as the energy of the electrons is increased. We find that the transverse velocity and associated angular momentum of electrons is a maximum for non-metallic CNTs with a chiral angle of 18o^o. Such CNTs are therefore the optimal choice for CNT windmills and also generate the largest internal magnetic field for a given longitudinal current. For a longitudinal current of order 10−410^{-4} amps, this field can be of order 10−110^{-1}Teslas, which is sufficient to produce interesting spintronic effects and a significant contribution to the self inductance.Comment: 4 pages, 1 figur

    Analysis and application of digital spectral warping in analog and mixed-signal testing

    Get PDF
    Spectral warping is a digital signal processing transform which shifts the frequencies contained within a signal along the frequency axis. The Fourier transform coefficients of a warped signal correspond to frequency-domain 'samples' of the original signal which are unevenly spaced along the frequency axis. This property allows the technique to be efficiently used for DSP-based analog and mixed-signal testing. The analysis and application of spectral warping for test signal generation, response analysis, filter design, frequency response evaluation, etc. are discussed in this paper along with examples of the software and hardware implementation

    Evaluation of a ln tan integral arising in quantum field theory

    Full text link
    We analytically evaluate a dilogarithmic integral that is prototypical of volumes of ideal tetrahedra in hyperbolic geometry. We additionally obtain new representations of the Clausen function Cl_2 and the Catalan constant G=Cl_2(\pi/2), as well as new relations between sine and Clausen function values.Comment: 24 pages, no figure

    Developing Students’ Energy Literacy in Higher Education

    Get PDF
    Purpose This paper aims to investigate students’ energy literacy at a UK university, and recommends ways in which it can be enhanced using a behaviour change model. Developing students’ energy literacy is a key part of the “greening” agenda, yet little is known about how students develop their ideas about energy use and energy saving at a university. Design/methodology/approach The research utilised a mixed-methods approach including an online survey (with 1,136 responses) and focus groups. Findings The research identified strengths and weaknesses in students’ energy literacy, and noted the relative influence of formal and informal curricula. The potential for aligning these curricula is highlighted through the 4Es model of enable, engage, exemplify and encourage. Research limitations/implications The research involved a single instrumental case-study site. The wider applicability of the findings should therefore be tested further in other institutions. Practical implications The research suggests ways in which universities might better support their students in making more sustainable energy-related behaviour choices, and it indicates the importance of knowledge as well as attitudes. Social implications The research may have implications for the energy-saving behaviours of individuals in the wider society. Originality/value Attempts to reduce energy use in higher education are widely seen in campus operations. This research provides an indication of the potential for enhancing energy-saving through different forms of curricula

    Carbon Nanotube Electron Windmills: A Novel Design for Nanomotors

    Full text link
    We propose a new drive mechanism for carbon nanotube (CNT) motors, based upon the torque generated by a flux of electrons passing through a chiral nanotube. The structure of interest comprises a double-walled CNT, formed from, for example, an achiral outer tube encompassing a chiral inner tube. Through a detailed analysis of electrons passing through such a "windmill", we find that the current due to a potential difference applied to the outer CNT generates sufficient torque to overcome the static and dynamic frictional forces that exists between the inner and outer walls, thereby causing the inner tube to rotate.Comment: 10 pages and 4 figure

    Observing Strategies for the Detection of Jupiter Analogs

    Get PDF
    To understand the frequency, and thus the formation and evolution, of planetary systems like our own solar system, it is critical to detect Jupiter-like planets in Jupiter-like orbits. For long-term radial-velocity monitoring, it is useful to estimate the observational effort required to reliably detect such objects, particularly in light of severe competition for limited telescope time. We perform detailed simulations of observational campaigns, maximizing the realism of the sampling of a set of simulated observations. We then compute the detection limits for each campaign to quantify the effect of increasing the number of observational epochs and varying their time coverage. We show that once there is sufficient time baseline to detect a given orbital period, it becomes less effective to add further time coverage-rather, the detectability of a planet scales roughly as the square root of the number of observations, independently of the number of orbital cycles included in the data string. We also show that no noise floor is reached, with a continuing improvement in detectability at the maximum number of observations N = 500 tested here.Peer reviewe

    Exoplanet properties from Lick, Keck and AAT

    Get PDF
    Doppler-shift measurements with a remarkable precision of Δλ/λ=3×10-9, corresponding to velocities of 1 m s-1, have been made repeatedly of 2500 stars located within 300 light years. The observed gravitational perturbations of the stars have revealed 250 orbiting planets, with 27 that cross in front of the host star, blocking a fraction of the starlight to allow measurement of the planet's mass, radius and density. Two new discoveries are the first good analog of Jupiter (HD 154345b) and the first system of five planets (55 Cancri). The predominantly eccentric orbits of exoplanets probably result from planet planet gravitational interactions or angular momentum exchange by mean-motion resonances. The planet mass distribution ranges from ~15 MJUP to as low as ~5 MEarth and rises toward lower masses as dN/dM~M-1.1. The distribution with orbital distance, a, rises (in logarithmic intervals) as dN/d log a~a+0.4. Extrapolation and integration suggests that 19% of all Sun-like stars harbor a gas-giant planet within 20 AU, but there remains considerable incompleteness for large orbits. Beyond 20 AU, the occurrence of gas-giant planets may be less than a few per cent as protoplanetary disk material there has lower densities and is vulnerable to destruction. Jupiter-mass planets occur more commonly around more massive stars than low mass stars. The transit of the Neptune-mass planet, Gliese 436b, yields a density of 1.55 g cm-3 suggesting that its interior has an iron silicate core surrounded by an envelope of water ice and an outer H He shell. Planets with masses as low as five Earth-masses may be commonly composed of iron nickel, rock and water along with significant amounts of H and He, making the term 'super-Earth' misleading. The transiting planet HD147506b has high orbital eccentricity but no significant orbital inclination to the line of sight, presenting a puzzle about its history. Its orbit together with the mean motion resonances of 4 of the 22 multi-planet systems provides further evidence for the role of planet planet interactions in shaping planetary architectures

    Decay of accelerated particles

    Get PDF
    We study how the decay properties of particles are changed by acceleration. It is shown that under the influence of acceleration (1) the lifetime of particles is modified and (2) new processes (like the decay of the proton) become possible. This is illustrated by considering scalar models for the decay of muons, pions, and protons. We discuss the close conceptual relation between these processes and the Unruh effect.Comment: Latex2e, 12 pages, 6 Postscript figures included with epsfig, to appear in Phys. Rev.
    • 

    corecore