96 research outputs found
Independent and combined impact of hypoxia and acute inorganic nitrate ingestion on thermoregulatory responses to the cold
Purpose: This study assessed the impact of normobaric hypoxia and acute nitrate ingestion on shivering thermogenesis, cutaneous vascular control, and thermometrics in response to cold stress. Method: Eleven male volunteers underwent passive cooling at 10 °C air temperature across four conditions: (1) normoxia with placebo ingestion, (2) hypoxia (0.130 FiO2) with placebo ingestion, (3) normoxia with 13 mmol nitrate ingestion, and (4) hypoxia with nitrate ingestion. Physiological metrics were assessed as a rate of change over 45 min to determine heat loss, and at the point of shivering onset to determine the thermogenic thermoeffector threshold. Result: Independently, hypoxia expedited shivering onset time (p = 0.05) due to a faster cooling rate as opposed to a change in central thermoeffector thresholds. Specifically, compared to normoxia, hypoxia increased skin blood flow (p = 0.02), leading to an increased core-cooling rate (p = 0.04) and delta change in rectal temperature (p = 0.03) over 45 min, yet the same rectal temperature at shivering onset (p = 0.9). Independently, nitrate ingestion delayed shivering onset time (p = 0.01), mediated by a change in central thermoeffector thresholds, independent of changes in peripheral heat exchange. Specifically, compared to placebo ingestion, no difference was observed in skin blood flow (p = 0.5), core-cooling rate (p = 0.5), or delta change in rectal temperature (p = 0.7) over 45 min, while nitrate reduced rectal temperature at shivering onset (p = 0.04). No interaction was observed between hypoxia and nitrate ingestion. Conclusion: These data improve our understanding of how hypoxia and nitric oxide modulate cold thermoregulation
Imaging protoplanets: observing transition disks with non-redundant masking
Transition disks, protoplanetary disks with inner clearings, are promising
objects in which to directly image forming planets. The high contrast imaging
technique of non-redundant masking is well posed to detect planetary mass
companions at several to tens of AU in nearby transition disks. We present
non-redundant masking observations of the T Cha and LkCa 15 transition disks,
both of which host posited sub-stellar mass companions. However, due to a loss
of information intrinsic to the technique, observations of extended sources
(e.g. scattered light from disks) can be misinterpreted as moving companions.
We discuss tests to distinguish between these two scenarios, with applications
to the T Cha and LkCa 15 observations. We argue that a static,
forward-scattering disk can explain the T Cha data, while LkCa 15 is best
explained by multiple orbiting companions.Comment: SPIE conference proceedin
Dendritic silver self-assembly in molten-carbonate membranes for efficient carbon dioxide capture
Membranes for CO2 capture should offer high permeant fluxes to keep membrane surface area small and material requirements low. Ag-supported, dual-phase, molten-carbonate membranes routinely demonstrate the highest CO2 fluxes in this class of membrane. However, using Ag as a support incurs high cost. Here, the non-equilibrium conditions of permeation were exploited to stimulate the self-assembly of a percolating, dendritic network of Ag from the molten carbonate. Multiple membrane support geometries and Ag incorporation methods were employed, demonstrating the generality of the approach, while X-ray micro-computed tomography confirmed that CO2 and O2 permeation stimulated self-assembly. We report the highest flux of Ag-supported molten-salt membranes to date (1.25 ml min−1 cm−2 at 650 °C) and ultrahigh permeability (9.4 × 10−11 mol m−1 s−1 Pa−1), surpassing the permeability requirement for economically-competitive post-combustion CO2 capture, all whilst reducing the membrane-volume-normalised demand for Ag by one order of magnitude
Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing process
The performance of lithium-ion batteries is determined by the architecture and properties of electrodes formed during manufacturing, particularly in the drying process when solvent is removed and the electrode structure is formed. Temperature is one of the most dominant parameters that influences the process, and therefore a comparison of temperature effects on both NMC622-based cathodes (PVDF-based binder) and graphite-based anodes (water-based binder) dried at RT, 60, 80, 100 and 120 °C has been undertaken. X-ray computed tomography showed that NMC622 particles concentrated at the surface of the cathode coating except when dried at 60 °C. However, anodes showed similar graphite distributions at all temperatures. The discharge capacities for the cathodes dried at 60, 80, 100 and 120 °C displayed the following trend: 60 °C < 80 °C < 100 °C < 120 °C as C-rate was increased which was consistent with the trends found in adhesion testing between 60 and 120 °C. Focused-ion beam scanning electrode microscopy and energy-dispersive X-ray spectroscopy suggested that the F-rich binder distribution was largely insensitive to temperature for cathodes. In contrast, conductivity enhancing fine carbon agglomerated on the upper surface of the active NMC particles in the cathode as temperature increased. The cathode dried at RT had the highest adhesion force of 0.015 N mm−1 and the best electrochemical rate performance. Conversely, drying temperature had no significant effect on the electrochemical performance of the anode, which was consistent with only a relatively small change in the adhesion, related to the use of lower adhesion water-based binders
The nitric oxide dependence of cutaneous microvascular function to independent and combined hypoxic cold exposure
Hypoxic modulation of nitric oxide (NO) production pathways in the cutaneous microvasculature and its interaction with cold-induced reflex vasoconstriction, independent of local cooling, have yet to be identified. This study assessed the contribution of NO to nonglabrous microvasculature perfusion during hypoxia and whole body cooling with concomitant inhibition of NO synthase [NOS; via NG-nitro-l-arginine methyl ester (l-NAME)] and the nitrite reductase, xanthine oxidase (via allopurinol), two primary sources of NO production. Thirteen volunteers were exposed to independent and combined cooling via water-perfused suit (5°C) and normobaric hypoxia (FIO2, 0.109 ± 0.002). Cutaneous vascular conductance (CVC) was assessed across four sites with intradermal microdialysis perfusion of 1) lactated Ringers solution (control), 2) 20 mmol l-NAME, 3) 10 µmol allopurinol, or 4) combined l-NAME/allopurinol. Effects and interactions were assessed via four-way repeated measures ANOVA. Independently, l-NAME reduced CVC (43%, P < 0.001), whereas allopurinol did not alter CVC (P = 0.5). Cooling decreased CVC (P = 0.001), and the reduction in CVC was consistent across perfusates (~30%, P = 0.9). Hypoxia increased CVC (16%, P = 0.01), with this effect abolished by l-NAME infusion (P = 0.04). Cold-induced vasoconstriction was blunted by hypoxia, but importantly, hypoxia increased CVC to a similar extent (39% at the Ringer site) irrespective of environmental temperature; thus, no interaction was observed between cold and hypoxia (P = 0.1). l-NAME restored vasoconstriction during combined cold-hypoxia (P = 0.01). This investigation suggests that reflex cold-induced cutaneous vasoconstriction acts independently of NO suppression, whereas hypoxia-induced cutaneous vasodilatation is dependent on NOS-derived NO production
High contrast imaging at the LBT: the LEECH exoplanet imaging survey
In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began
its 130-night campaign from the Large Binocular Telescope (LBT) atop Mt
Graham, Arizona. This survey benefits from the many technological achievements
of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual
adaptive secondary mirrors for high Strehl performance, and a cold beam
combiner to dramatically reduce the telescope's overall background emissivity.
LEECH neatly complements other high-contrast planet imaging efforts by
observing stars at L' (3.8 m), as opposed to the shorter wavelength
near-infrared bands (1-2.4 m) of other surveys. This portion of the
spectrum offers deep mass sensitivity, especially around nearby adolescent
(0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme
adaptive optics systems, while providing an alternative survey strategy.
Additionally, LEECH is characterizing known exoplanetary systems with
observations from 3-5m in preparation for JWST.Comment: 12 pages, 5 figures. Proceedings of the SPIE, 9148-2
The Gray Needle: Large Grains in the HD 15115 Debris Disk from LBT/PISCES/Ks and LBTI/LMIRcam/L' Adaptive Optics Imaging
We present diffraction-limited \ks band and \lprime adaptive optics images of
the edge-on debris disk around the nearby F2 star HD 15115, obtained with a
single 8.4 m primary mirror at the Large Binocular Telescope. At \ks band the
disk is detected at signal-to-noise per resolution element (SNRE) \about 3-8
from \about 1-2\fasec 5 (45-113 AU) on the western side, and from \about
1.2-2\fasec 1 (63-90 AU) on the east. At \lprime the disk is detected at SNRE
\about 2.5 from \about 1-1\fasec 45 (45-90 AU) on both sides, implying more
symmetric disk structure at 3.8 \microns . At both wavelengths the disk has a
bow-like shape and is offset from the star to the north by a few AU. A surface
brightness asymmetry exists between the two sides of the disk at \ks band, but
not at \lprime . The surface brightness at \ks band declines inside 1\asec
(\about 45 AU), which may be indicative of a gap in the disk near 1\asec. The
\ks - \lprime disk color, after removal of the stellar color, is mostly grey
for both sides of the disk. This suggests that scattered light is coming from
large dust grains, with 3-10 \microns -sized grains on the east side and 1-10
\microns dust grains on the west. This may suggest that the west side is
composed of smaller dust grains than the east side, which would support the
interpretation that the disk is being dynamically affected by interactions with
the local interstellar medium.Comment: Apj-accepted March 27 2012; minor correction
Power poses – where do we stand?
<p>Dynamic results for Scenario 2.</p
Ceramic supports with highly dense and aligned pores for moltencarbonate based CO2 separation membranes
Resumen del trabajo presentado a la XVII Conference Ceramics in Europe, celebrada en Krakow (Poland), del 10 al 14 de julio de 2022.Spanish Ministerio de EconomÃa y Competitividad and Feder Funds grants MAT2016-77769R and BES-2017-079683; Departamento de Ciencia, Universidad y Sociedad del Conocimiento del Gobierno de Aragón through the financial support to the Research Group T02 20R.N
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
- …