80 research outputs found

    Hydrogen-bonding synthons in lamotrigine salts: 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 2-[(2-carboxyphenyl)disulfanyl]benzoate in its monohydrate and anhydrous forms

    Get PDF
    Lamotrigine is a drug used in the treatment of epilepsy and related convulsive diseases. The drug in its free form is rather inadequate for pharmacological use due to poor absorption by the patient, which limits its bioavailability. On the other hand, the lamotrigine mol­ecule is an excellent hydrogen-bonding agent and this has been exploited intensively in the search for better formulations. The formulation presently commercialized (under the brand name Lamictal) is rather complex and includes a number of anions in addition to the active pharmaceutical ingredient (API). The title salts of lamotrigine, namely 3,5-di­amino-6-(2,3-di­chloro­phen­yl)-1,2,4-triazin-2-ium 2-[(2-carb­oxy­phen­yl)di­sul­fan­yl]benzoate monohydrate, C9H8Cl2N5+·C14H9O4S2-·H2O, (I), and the anhydrate, C9H8Cl2N5+·C14H9O4S2-, (II), contain a lamotriginium cation (L), a hydrogen di­thio­dibenzoate monoanion (D) and, in the case of (I), a disordered solvent water mol­ecule. Both L and D present their usual configurations severely twisted around their central C-C and S-S bonds, respectively. The supra­molecular structure generated by the many available donor and acceptor sites is characterized by a planar anti­symmetric motif of the form D-L-L-D, i.e. the structural building block. Although this characteristic motif is extremely similar in both structures, its conformation involves different donors and acceptors in its R22(8) central L-L homosynthon. The lateral R22(8) D-L hetero­synthons are, on the other hand, identical. These substructures are further connected by strong hydrogen bonds into broad two-dimensional structures, in turn weakly linked to each other. Even if the homo- and heterosynthons in (I) and (II) are rather frequent in lamotrigine structural chemistry, the composite tetra­meric synthon appears to be much less common. The occurrence of these motifs among lamotrigine salts and cocrystals is analyzed.Fil: Freire Espeleta, Eleonora. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Polla, Griselda Ines. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentin

    A triclinic polymorph of cyclo-tetra - Thio-saccharinato- 8 S:S-tetra-kis[(triphenyl-phosphane-P)silver(I)]

    Get PDF
    The triclinic structure of the title compound, cyclo-tetra-kis-(-1,1-dioxo- 1 6,2-benzothia-zole-3-thiol-ato- 2 S:S)tetra-kis- [(triphenyl-phosphane-P)silver(I)], [Ag4(C7H4NO2S2)4(C18H15P)4], is a polymorph of the previously reported monoclinic structure [Dennehy, Mandolesi, Quinzani & Jennings (2007). Z. Anorg. Allg. Chem. 633, 2746-2752]. In both polymorphs, the complex lies on a crystallographic inversion centre and the bond distances are closely comparable. Some differences can be found in the inter-atomic angles and torsion angles involving the inner Ag4S4 skeleton. The polymorphs contain essentially identical two-dimensional layers, but with different layer stacking arrangements. In the triclinic form, all layers are related by lattice translation, while in the monoclinic form they are arranged around glide planes so that adjacent layers are mirrored with respect to each other.Fil: Dennehy, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; ArgentinaFil: Freire Espeleta, Eleonora. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentin

    Aripiprazole salts: I. Aripiprazole nitrate

    Get PDF
    The crystal structure of aripiprazole nitrate (systematic name: 4-(2,3-dichloro-phen-yl)-1-{4-[(2-oxo-1,2,3,4-tetra-hydro-quino-lin-7-yl)-oxy] but-yl}piperazin-1-ium nitrate), C 23H 28Cl 2N 3O 2 +·NO 3 - or AripH +·NO 3 -, is presented and the mol-ecule com-pared with the aripiprazole molecules reported so far in the literature. Bond distances and angles appear very similar, except for a slight lengthening of the C - NH distances involving the protonated N atom, and the main differences are to be found in the mol-ecular spatial arrangement (revealed by the sequence of torsion angles) and the inter-molecular inter-actions (resulting from structural elements specific to this structure, viz. the nitrate counter-ions on one hand and the extra protons on the other hand as hydrogen-bond acceptors and donors, respectively). The result is the formation of [100] strips, laterally linked by weak π-π and C - Cl⋯π inter-actions, leading to a family of undulating sheets parallel to (010).Fil: Freire Espeleta, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín; ArgentinaFil: Polla, Griselda Ines. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentin

    Aripiprazole salts: II. Aripiprazole perchlorate

    Get PDF
    The molecular structure of aripiprazole perchlorate (systematic name: 4-(2,3-dichlorophenyl)-1-{4-[(2-oxo-1,2,3,4-tetrahydroquinolin-7-yl)oxy]butyl} piperazin-1-ium perchlorate), C23H28Cl2N 3O2 +-ClO4-, does not differ substantially from the recently published structure of aripiprazole nitrate [Freire, Polla & Baggio (2012). Acta Cryst. C68, o170-o173]. Both compounds have almost identical bond distances, bond angles and torsion angles. The two different counter-ions occupy equivalent places in the two structures, giving rise to very similar first-order 'packing motifs'. However, these elemental arrangements interact with each other in different ways in the two structures, leading to two-dimensional arrays with quite different organizations.Fil: Freire Espeleta, Eleonora. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Polla, Griselda Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); ArgentinaFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentin

    Polymorphic forms of bendamustine hydro­chloride: crystal structure, thermal properties and stability at ambient conditions

    Get PDF
    Crystallographic, thermal and stability analyses are presented of three different anhydrated forms of bendamustine hydro­chloride [(I), (III) and (IV)] and a fourth, monohydrated one (II). Since form (I) presents the higher melting point and the higher heat of fusion, according to the 'heat of fusion' rule it should be the most stable in thermodynamic terms [Burger & Ramberger (1979). Mikrochim. Acta, 72, 259-271], though it is unstable in high-humidity conditions. The monohydrate structure (II), in turn, dehydrates by heating and topotactically transform into anhydrate (III). This latter form appears as less stable than anhydrate (I), to which it is linked via a monotropic relationship. For these three different forms, the crystal structure has been determined by single crystal X-ray diffraction. The crystal structures and molecular conformations of forms (II) and (III) are quite similar, as expected from the topotactic transformation linking them; furthermore, under high-humidity conditions, form (III) shows changes compatible with a transformation into form (II) within 24 h. The crystal structure of form (I) is different from the other two. The remaining polymorphic form (IV) could only be obtained as a powder, from which its crystalline structure could not be determined. The relative thermodynamic stability of the different crystalline forms was determined by differential scanning calorimetry and thermogravimetrical studies, and their stability under different humidity conditions analysed.Fil: Gaztañaga, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Vega, Daniel Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentin

    Cyclization of 1,2:3,4-di-O-isopropylidene-α-D-galacto-1,6-hexodialdo-1,5-pyranose acylhydrazone and semicarbazone

    Get PDF
    Cyclization of 1,2:3,4-di-O-isopropylidene-α-D-galacto-1,6-hexodialdo-1,5-pyranose benzoylhydrazone using acetylating mixtures led us to the corresponding (2R)- and (2S)-5- phenyl-1,3,4-oxadiazoline derivatives. The same conditions applied to the semicarbazone produced the 5-methyl-1,3,4-oxadiazoline derivative as the main compound, which is formed with acetylating mixtures even at room temperature. X-Ray analysis and NMR techniques were used to determine the stereochemistry of the new asymmetric centers.Fil: Martins Alho, Miriam Amelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono; Argentina; Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Química; Argentina;Fil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Gerencia de Investigación y Aplicaciones; Argentina;Fil: D'accorso, Norma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono; Argentina

    Halogen bonding in 1,2-dibromo-4,5-dimethoxybenzene and 1,2-diiodo-4,5-dimethoxybenzene

    Get PDF
    An interesting case of ‘halogen-bonding-promoted’ crystal structure architecture is presented. The two title compounds, C8H8Br2O2 and C8H8I2O2, have almost indistinguishable molecular structures but very different spatial organization, and this is mainly due to differences in the halogen-bonding interactions in which the different species present, i.e. Br and I, take part. The dibromo structure exhibits a Pi-bonded columnar array involving all four independent molecules in the asymmetric unit, with intercolumnar interactions governed by C—Br...Br—C links and with no C—Br...O/N interactions present. In the diiodo structure, instead, the C—I...O synthon prevails, de.ning linear chains, in turn interlinked by C—I...I—C interactions.8H8Br2O2 and C8H8I2O2, have almost indistinguishable molecular structures but very different spatial organization, and this is mainly due to differences in the halogen-bonding interactions in which the different species present, i.e. Br and I, take part. The dibromo structure exhibits a Pi-bonded columnar array involving all four independent molecules in the asymmetric unit, with intercolumnar interactions governed by C—Br...Br—C links and with no C—Br...O/N interactions present. In the diiodo structure, instead, the C—I...O synthon prevails, de.ning linear chains, in turn interlinked by C—I...I—C interactions.Fil: Cukiernik, Fabio Daniel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Zelcer, Andrés. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garland, Maria Teresa. Universidad de Chile; ChileFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentin

    Relative influence of noncovalent interactions on the melting points of a homologous series of 1,2-dibromo- 4,5-dialkoxybenzenes

    Get PDF
    Crystal structures are presented for two members of the homologous series of 1,2-dibromo-4,5-dialkoxybenzenes, viz. those with decyloxy and hexadecyloxy substituents, namely 1,2-dibromo-4,5-bis(decyloxy)benzene, C26H44Br2O2, (II), and 1,2-dibromo-4,5-bis(hexadecyloxy)benzene, C38H68Br2O2, (III). The relative influences which halogen bonding, π- π stacking and van der Waals interactions have on these structures are analysed and the results compared with those already found for the lightest homologue, 1,2-dibromo-4,5- dimethoxybenzene, (I) [Cukiernik, Zelcer, Garland & Baggio (2008). Acta Cryst. C64, o604-o608]. The results confirm that the prevalent interactions stabilizing the structures of (II) and (III) are van der Waals contacts between the aliphatic chains. In the case of (II), weak halogen C - Br ⋯(Br - C) ′ interactions are also present and contribute to the stability of the structure. In the case of (III), van der Waals interactions between the aliphatic chains are almost exclusive, weaker C - Br ⋯ π interactions being the only additional interactions detected. The results are in line with commonly accepted models concerning trends in crystal stability along a homologous series (as measured by their melting points), but the earlier report for n = 1, and the present report for n = 10 and 16, are among the few providing single-crystal information validating the hypothesis.Fil: Fonrouge, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Cecchi, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Alborés, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica; ArgentinaFil: Cukiernik, Fabio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Three transition-metal complexes with the macrocyclic ligand meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L): [Cu(ClO4)2(L)], [Zn(NO3)2(L)] and [CuCl(L)(H2O)]Cl

    Get PDF
    The three transition-metal complexes, (meso-5,7,7,12,14,14- hexamethyl-1,4,8,11-tetraazacyclotetradecane-4N)bis(perchlorato- O)copper(II), [Cu(ClO4)2(C18H40N4)], (I), (meso- 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- 4N)bis(nitrato-O)zinc(II), [Zn(NO3)2(C18H40N4)], (II), and aquachlorido(meso-5,7,7,12,14,14-hexamethyl-1,4,8,11- tetraazacyclotetradecane-4N)copper(II) chloride, [CuCl- (C18H40N4)(H2O)]Cl, (III), are described. The molecules display a very similarly distorted 4+2 octahedral environment for the cation [located at an inversion centre in (I) and (II)], defined by the macrocycle N4 group in the equatorial sites and two further ligands in trans-axial positions [two O? ClO3 ligands in (I), two O?NO2 ligands in (II) and one chloride and one aqua ligand in (III)]. The most significant difference in molecular shape resides in these axial ligands, the effect of which on the intra- and intermolecular hydrogen bonding is discussed. In the case of (I), all strong hydrogenbond donors are saturated in intramolecular interactions, while weak intermolecular C?H O contacts result in a three-dimensional network. In (II) and (III), instead, there are N?H and O?H donors left over for intermolecular interactions, giving rise to the formation of strongly linked but weakly interacting chains.Fil: Yasmin, Sabina. University of Chittagong; BangladeshFil: Suarez, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Doctorovich, Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Roy, Tapashi G.. University of Chittagong; BangladeshFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica; Argentin
    corecore