

electronic reprint

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701 Editor: Anthony Linden

Relative influence of noncovalent interactions on the melting points of a homologous series of 1,2-dibromo-4,5-dialkoxybenzenes

Ana Fonrouge, Florencia Cecchi, Pablo Alborés, Ricardo Baggio and Fabio D. Cukiernik

Acta Cryst. (2013). C69, 204–208

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Crystallographica Section C: Crystal Structure Communications specializes in the rapid dissemination of high-quality studies of crystal and molecular structures of interest in fields such as chemistry, biochemistry, mineralogy, pharmacology, physics and materials science. The numerical and text descriptions of each structure are submitted to the journal electronically as a Crystallographic Information File (CIF) and are checked and typeset automatically prior to peer review. The journal is well known for its high standards of structural reliability and presentation. Section C publishes approximately 1000 structures per year; readers have access to an archive that includes high-quality structural data for over 10000 compounds.

Crystallography Journals Online is available from journals.iucr.org

organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Relative influence of noncovalent interactions on the melting points of a homologous series of 1,2-dibromo-4,5-dialkoxybenzenes

Ana Fonrouge,^a Florencia Cecchi,^a Pablo Alborés,^a Ricardo Baggio^{b*} and Fabio D. Cukiernik^{a*}

^aDepartamento de Química Inorgánica, Analítica y Química Física/INQUIMAE– CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, and ^bDepartamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina

Correspondence e-mail: baggio@cnea.gov.ar, fabioc@qi.fcen.uba.ar

Received 23 December 2012 Accepted 24 January 2013 Online 29 January 2013

Crystal structures are presented for two members of the homologous series of 1,2-dibromo-4,5-dialkoxybenzenes, viz. those with decyloxy and hexadecyloxy substituents, namely 1,2-dibromo-4,5-bis(decyloxy)benzene, $C_{26}H_{44}Br_2O_2$, (II), and 1,2-dibromo-4,5-bis(hexadecyloxy)benzene, C₃₈H₆₈Br₂O₂, (III). The relative influences which halogen bonding, $\pi - \pi$ stacking and van der Waals interactions have on these structures are analysed and the results compared with those already found for the lightest homologue, 1,2-dibromo-4,5dimethoxybenzene, (I) [Cukiernik, Zelcer, Garland & Baggio (2008). Acta Cryst. C64, o604-o608]. The results confirm that the prevalent interactions stabilizing the structures of (II) and (III) are van der Waals contacts between the aliphatic chains. In the case of (II), weak halogen $C-Br\cdots(Br-C)'$ interactions are also present and contribute to the stability of the structure. In the case of (III), van der Waals interactions between the aliphatic chains are almost exclusive, weaker C-Br $\cdot \cdot \pi$ interactions being the only additional interactions detected. The results are in line with commonly accepted models concerning trends in crystal stability along a homologous series (as measured by their melting points), but the earlier report for n = 1, and the present report for n = 10 and 16, are among the few providing single-crystal information validating the hypothesis.

Comment

The design of advanced materials exhibiting selected crystalline structures based on specific intermolecular interactions is nowadays one of the main conceptual tools in materials science. Knowledge of the strength and directionality of noncovalent interactions (hydrogen bonds, π - π stacking, halogen bonds *etc.*) allows for such design and hundreds of successful examples can be found in growing research fields like crystal engineering (Desiraju, 2003) or supramolecular chemistry (Steed & Atwood, 2009; Bruce, 2012). In most cases, the structure is governed by one prevalent interaction (and was designed on this basis). The predictability of the crystal structure that a given compound will adopt, on the basis of the intermolecular interactions it can exhibit, is high in such cases, but diminishes when the number of competing interactions rises. One way to explore the relative influence of different interactions, keeping some constant and allowing for a smooth variation of just one or two, is to work with different members of an homologous series.

In a study of the structure of dihalogenodimethoxybenzene compounds (Cukiernik *et al.*, 2008), we found that the structure of 1,2-dibromo-4,5-dimethoxybenzene, (I) (Scheme 1), extends through a combination of π - π , dipolar and halogenbonding interactions. In this work, we report the crystal structures of two heavier homologues in this series, namely 1,2-dibromo-4,5-bis(decyloxy)benzene, (II), and 1,2-dibromo-4,5-bis(hexadecyloxy)benzene, (III), and analyse the relative influence halogen bonding, π - π stacking and van der Waals interactions have on the structures and, consequently, on some physical properties of these compounds.

Fig. 1 presents molecular views of both (II) and (III), where their striking 'jellyfish-like' geometry (which defines their packing characteristics) is apparent. The bond lengths and angles are unremarkable, and a distinguishing feature is the 'straight' character of the terminal aliphatic chains, as seen in the extremely narrow span of the C–C–C–C torsion angles, *i.e.* 171.0 (6)–179.9 (10)° in (II) and 174.13 (11)–179.9 (2)° in (III).

According to their geometric disposition, $C-X\cdots(X-C)'$ interactions (X = halogen) have historically been divided into types I and II (see Scheme 2); for further details, see Desiraju & Parthasarathy (1989, and references therein). In the case of (II) (Table 1) molecules interact weakly *via* $C-Br\cdots(Br-C)'$ contacts of types I and II, some of them at the upper limit for stabilizing $Br\cdots Br$ distances. On the basis of accumulated experimental evidence, there is an increasing tendency to accept small (though not negligible) stabilization effects

organic compounds

The molecular structures of (a) (II) and (b) (III), showing the atomnumbering schemes. Displacement ellipsoids are drawn at the 40% probability level.

arising from rather long Br \cdots Br contacts [up to 10% longer than twice the Br van der Waals radius, ~3.7 Å; see, for example, Jones & Kuś (2007, 2011) and Al-Far & Ali (2007)].

The first and second entries, corresponding respectively to type I and type II contacts (Fig. 2*a*, labelled **A**), define dimeric units arranged in a head-to-head fashion (Fig. 2*a*, labelled **B**). In turn, as a consequence of a third $C-Br\cdots(Br-C)'$ type-I contact (Table 1, entry 3) in conjunction with van der Waals interactions between aliphatic chains, these dimeric units are held together as one-dimensional strands parallel to *b*. van der Waals interactions between parallel aliphatic chains also link the dimeric units along *c*, defining broad planar arrays parallel to (100), $\sim a/2$ wide along *a* (Fig. 2*a*, labelled **C**). Fig. 2(*b*) gives a simplified view of the way in which both kinds of Br \cdots Br interactions build up.

The case of compound (III) is similar in general terms, *viz*. leading van der Waals interactions between aliphatic chains result in broad planar arrays parallel to (100), but the results are realized in quite different ways. To begin with, the head-tohead contacts joining antiparallel units in (II) are replaced by noticeably weaker $C-Br\cdots\pi$ contacts (Table 2) between parallel groups in (III), as shown in Fig. 3(*a*) (labelled **A**). These halogen $\cdots\pi$ interactions, presented in detail in Fig. 4, define columnar arrays along *c* (Fig. 3*b*, labelled **B**), which in

turn interleave their long aliphatic chains, linking them into broad planar arrays parallel to (100), $\sim a/2$ wide along *a* (Fig. 3, labelled **C**).

These results are of significance for interpreting some physical properties of these compounds, namely their melting point (m.p.). Indeed, the trend of the m.p. along the whole homologous series, according to literature data (Sauer & Wegner, 1988; Kalashnikova et al., 2003; Wohrle & Schmidt, 1988; Hanack et al., 1990), is shown in Fig. 5. In order to be able to discuss this trend in terms of the crystal structures solved here, we measured the m.p. of the structurally characterized compounds directly by differential scanning calorimetry (DSC) on single crystals from the same crop used for structure elucidation. Single crystals of (II) melt at 316.5 K $(\Delta H = 66 \text{ kJ mol}^{-1})$ and single crystals of (III) melt at 332.5 K $(\Delta H = 86 \text{ kJ mol}^{-1})$, very close to the previously reported values for powder samples. This agreement validates the use of the present structural information for the interpretation of the m.p. trend along the whole series.

This kind of behaviour (an initial decrease in m.p. with increasing chain length n, up to a certain value of n, then a progressive increase in m.p. with further increasing n, up to a

Figure 3

Packing diagrams for (III), depicting (*a*) a general view along *c*, showing the chains in projection, and (*b*) a general view along *b*, showing the chains running horizontally. The areas labelled **A**, **B** and **C** are discussed in the *Comment*. [Symmetry code: (i) $x, -y + 1, z - \frac{1}{2}$.]

limiting value) is frequently found in homologous series with polar components (aliphatic alcohols, aliphatic carboxylic acids *etc.*; Lutton, 1967; Weast, 1986) and is often interpreted in terms of a diblock molecular architecture, in which both molecular blocks (here denoted 1 and 2) exhibit different packing requirements. For a homologous series, one of the molecular blocks (*e.g.* 2) is the aliphatic chain; in such a case, the usual argument takes the form that, for short aliphatic chains, the packing is governed by the other block, 1; increasing chain length progressively disturbs this packing,

Figure 4

A packing view for (III), projected along c, showing a simplified version of the C-Br $\cdots \pi$ interactions. Terminal aliphatic tails have been shortened to a few C atoms, for clarity.

Figure 5

The melting points of 1,2-dibromo-4,5-dialkoxybenzenes as a function of alkoxy chain length. Filled circles represent literature data and open squares represent data for (II) and (III).

facilitating the melting process. For long-chain homologues, the packing of the aliphatic chains is the main driving force for the crystal structure; in those cases, block **1** acts as a disturbing agent for the packing, this effect being stronger (lower m.p.) as chain length decreases. These kinds of arguments are found in the fields of physical organic chemistry, polymers and liquid crystals (Platé Shibaev, 1974; Weber *et al.*, 1990; Ibn-Elhaj *et al.*, 1992). However, although these arguments are accepted and often based on powder X-ray diffraction evidence, they are not always supported by single-crystal crystallographic evidence.

In the present case, the structures of (I), (II) and (III) provide direct experimental support for this interpretation. Indeed, the crystal structure of (I) is essentially built up by π - π and halogen-bond interactions, while the prevalent interactions driving the structures of (II) and (III) are van der Waals interactions between the aliphatic chains. In the case of (II), halogen C-Br···(Br-C)' contacts are still present and contribute to the overall stability of the structure. In the case of (III), van der Waals interactions between the aliphatic chains are almost exclusive, weaker C-Br···(ring centroid) contacts being the only additional interactions detected.

Possible future avenues for obtaining additional evidence for the homologous series under study could be to crystallize and solve the structure of the n = 2 homologue, as well as to find the 'transition point', *i.e.* the *n* value for which the headto-head arrangement found in (II) is replaced by the 'tailcontact' arrangement found in (III). Further work on the subject is in progress.

Experimental

All chemical precursors were purchased from Aldrich and used without further purification. Differential scanning calorimetry (DSC)

Table 1										
Geometry	of	the	$C - X \cdot \cdot \cdot (X - C)'$	interactions	(Å,	°)	in	(II)	(X	=
halogen).										

The mean interaliphatic distance is 3.80 Å.

$C - X \cdots (X - C)'$	$X \cdots X'$	$(C-X)\cdots X'$	$X \cdots (X - C)'$	Interaction type
$C1-Br1\cdots(Br1-C1)^i$	3.7722 (15)	118.6 (2)	118.6 (2)	I
$C1-Br1\cdots(Br2-C2)^{i}$	3.6437 (10)	171.5 (2)	122.1(2)	П
$C1 - Br1 \cdot \cdot \cdot (Br2 - C2)^{ii}$	3.8704 (11)	73.0 (2)	91.0 (2)	Ι

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) x, y - 1, z.

was performed with a Shimadzu DSC-50 apparatus. Elemental analysis was carried out at the Servicio a Terceros of INQUIMAE on a Carlo Erba CHNS-O EA1108 analyser. ¹H NMR spectra were measured on a Bruker AM500 spectrometer, using CDCl₃ as solvent and its residual peaks as internal references (7.26 p.p.m. for ¹H).

Both (II) and (III) were synthesized in two steps from catechol (benzene-1,2-diol). The first step consisted of a Williamson's etherification of both hydroxy groups by reacting catechol with the appropriate bromoalkane, following published procedures (Boden et al., 1993). The second step was an aromatic electrophilic substitution in the activated para positions relative to the alkoxy chains.

For the preparation of 1,2-dibromo-4,5-bis(decyloxy)benzene, (II), 1,2-bis(decyloxy)benzene (1.282 g) was dissolved in cold CH₂Cl₂ (16 ml), placed in a two-necked flask equipped with an NaHSO3 bubbler with pressure compensation and immersed in an ice bath. Bromine (0.35 ml dissolved in 5 ml CH₂Cl₂) was added dropwise and the mixture was allowed to warm to room temperature. The progress of the reaction was monitored by thin-layer chromatography (TLC) $(CH_2Cl_2$ -cyclohexane, 1:3 v/v). When the reaction was complete, it was stopped by the addition of aqueous NaHSO₃. The aqueous phase was discarded and the organic phase was washed successively with water, aqueous NaHSO3 and water, and then dried with anhydrous Na₂SO₄, filtered and evaporated to dryness in a rotary evaporator. The solid was recrystallized from ethanol (yield 1.56 g, 87%). ¹H NMR (500 MHz, CD₃Cl): δ 7.058 (s, 2H), 3.94 (t, 4H), 1.78 (q, 4H), 1.44 (q, 4H), 1.34–1.27 (m, 24H), 0.88 (t, 6H). Single crystals were obtained by slow cooling (2 K per day) of a concentrated ethanol solution of (II).

For the preparation of 1,2-dibromo-4,5-bis(hexadecyloxy)benzene, (III), the synthetic procedure was identical to that followed for the preparation of (II), but using 1,2-bis(hexadecyloxy)benzene (2.009 g dissolved in 25 ml CH₂Cl₂) instead of 1,2-bis(decyloxy)benzene and 0.40 ml Br₂ instead of 0.35 ml (yield 1.88 g, 73%). Analysis found (calculated for C₃₈H₆₈Br₂O₂) (%): C 63.6 (63.68), H 9.6 (9.56). ¹H NMR (500 MHz, CD₃Cl): δ 7.06 (s, 2H), 3.94 (t, 4H), 1.78 (q, 4H), 1.44 (q, 4H), 1.34–1.27 (m, 48H), 0.88 (t, 6H). Single crystals were obtained by slow cooling of and solvent evaporation from a concentrated solution of (III) in chloroform.

Compound (II)

Crystal data

 $C_{26}H_{44}Br_2O_2$ $M_r = 548.43$ Monoclinic, C2/c a = 67.0788 (15) Å b = 4.4717(1) Å c = 18.2399 (4) Å $\beta = 101.216 \ (2)^{\circ}$

V = 5366.7 (2) Å³ Z = 8Mo Ka radiation $\mu = 3.04 \text{ mm}^{-1}$ T = 150 K $0.56 \times 0.27 \times 0.07 \ \text{mm}$

Table 2

Geometry of the C-X··· π interaction (Å, °) in (III) (X = halogen).

Cg1 is the centroid of the C1–C6 ring. The mean interaliphatic distance is 3.90 Å.

$C - X \cdots Cg$	C-X	$X \cdots Cg$	$C \cdots Cg$	$C-X\cdots Cg$
$C2-Br2\cdots Cg1^{i}$	1.893 (2)	3.976 (3)	4.941	109.1

Symmetry code: (i) $x, -y + 1, z - \frac{1}{2}$.

Data collection

Oxford Gemini S Ultra CCD area-	28792 measured reflections
detector diffractometer	5387 independent reflections
Absorption correction: multi-scan	4981 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.068$
Diffraction, 2009)	
$T_{\rm min} = 0.42, \ T_{\rm max} = 0.78$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.069$	271 parameters
$wR(F^2) = 0.184$	H-atom parameters constrained
S = 1.21	$\Delta \rho_{\rm max} = 1.67 \text{ e } \text{\AA}^{-3}$
5387 reflections	$\Delta \rho_{\rm min} = -0.95 \text{ e} \text{ \AA}^{-3}$

Compound (III)

Crystal data

$C_{38}H_{68}Br_2O_2$	$V = 3868 (2) \text{ Å}^3$
$M_r = 716.72$	Z = 4
Monoclinic, Cc	Mo $K\alpha$ radiation
a = 50.158 (5) Å	$\mu = 2.13 \text{ mm}^{-1}$
b = 8.360 (3) Å	T = 294 K
c = 9.248 (3) Å	$0.58 \times 0.32 \times 0.10 \text{ mm}$
$\beta = 94.136 \ (5)^{\circ}$	

Data collection

16641 measured reflections
6905 independent reflections
4926 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
with 2716 Friedel pairs
Flack parameter: 0.087 (5)

Compound (III) posed no problems, either in the data collection or in the model refinement. In contrast, (II) showed disorder in the hydrophilic region, for which a low-temperature data set was needed to resolve the problem. In this way, a reasonable model could be refined, even when neglecting some (impossible to model) disorder effects. This was evident in some important reflection outliers, as well as in some significant $\Delta \rho$ peaks, e.g. 1.67 e Å⁻³ at 2.04 Å from Br1.

All the H atoms in (III), and most of those in (II), were visible in difference maps, but they were subsequently placed in geometrically idealized positions and allowed to ride on their parent atoms, with aromatic C-H = 0.93 Å, methylene C-H = 0.97 Å and methyl

electronic reprint

C-H = 0.96 Å, and with $U_{iso}(H) = 1.2$, 1.2 and $1.5U_{eq}(C)$, respectively.

For both compounds, data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors acknowledge ANPCyT (grant No. PME 01113) for the X-ray diffractometer, and UBACyT (grant No. 20020100101000) and CONICET (a PhD fellowship for FC) for financial support. PA and FDC are members of the research staff of Conicet.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: UK3060). Services for accessing these data are described at the back of the journal.

References

- Al-Far, R. & Ali, B. F. (2007). Acta Cryst. E63, m1701.
- Boden, N., Borner, R. C., Bushby, R. J., Cammidge, A. N. & Jesudason, M. V. (1993). Liq. Cryst. 15, 851–858.

- Bruce, D. W. (2012). Supramolecular Chemistry: From Molecules to Nanomaterials, edited by P. A. Gale & J. W. Steed, pp. 3493–3514. London: John Wiley & Sons.
- Cukiernik, F. D., Zelcer, A., Garland, M. T. & Baggio, R. (2008). Acta Cryst. C64, o604–o608.
- Desiraju, G. R. (2003). J. Mol. Struct. 656, 5-15.
- Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hanack, M., Gül, A., Hirsch, A., Mandal, B. K., Subramanian, L. R. & Witke, E. (1990). Mol. Cryst. Liq. Cryst. 187, 365–382.
- Ibn-Elhaj, M., Guillon, D., Skoulios, A., Giroud-Godquin, A. M. & Maldivi, P. (1992). Liq. Cryst. 11, 731–744.
- Jones, P. G. & Kuś, P. (2007). Z. Naturforsch. Teil B, 62, 725-731.
- Jones, P. G. & Kuś, P. (2011). Acta Cryst. C67, o131-o133.
- Kalashnikova, I. P., Zhukov, I. V., Tomilova, L. G. & Zefirova, N. S. (2003). *Russ. Chem. Bull.* 52, 1709–1714.
- Lutton, E. S. (1967). In *Fatty Acids*, edited by K. S. Markley. New York: Interscience Publishers.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Platé, N. A. & Shibaev, V. P. (1974). J. Polym. Sci. Macromol. Rev. 8, 117–253. Sauer, T. & Wegner, G. (1988). Mol. Cryst. Liq. Cryst. 162, 97–118.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Steed, J. L. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. London: John Wiley & Sons.
- Weast, R. C. (1986). Editor. *Handbook of Chemistry and Physics*, 66th ed. Boca Raton: CRC Press.
- Weber, P., Guillon, D., Skoulios, A. & Miller, R. D. (1990). *Liq. Cryst.* 8, 825–837.
- Wohrle, D. & Schmidt, V. (1988). J. Chem. Soc. Dalton Trans. pp. 549-551.

Acta Cryst. (2013). C69, 204-208 [doi:10.1107/S0108270113002485]

Relative influence of noncovalent interactions on the melting points of a homologous series of 1,2-dibromo-4,5-dialkoxybenzenes

Ana Fonrouge, Florencia Cecchi, Pablo Alborés, Ricardo Baggio and Fabio D. Cukiernik

(II) 1,2-Dibromo-4,5-bis(decyloxy)benzene

Crystal data

C₂₆H₄₄Br₂O₂ $M_r = 548.43$ Monoclinic, C2/c Hall symbol: -C 2yc a = 67.0788 (15) Å b = 4.4717 (1) Å c = 18.2399 (4) Å $\beta = 101.216$ (2)° V = 5366.7 (2) Å³ Z = 8

Data collection

Oxford Gemini S Ultra CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans, thick slices Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\min} = 0.42, T_{\max} = 0.78$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.184$ S = 1.215387 reflections 271 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 2288 $D_x = 1.358 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.7107 \text{ Å}$ Cell parameters from 11243 reflections $\theta = 2.1-25.8^{\circ}$ $\mu = 3.04 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.56 \times 0.27 \times 0.07 \text{ mm}$

28792 measured reflections 5387 independent reflections 4981 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 26.2^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -82 \rightarrow 82$ $k = -4 \rightarrow 5$ $l = -22 \rightarrow 22$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0236P)^2 + 122.7172P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.67$ e Å⁻³ $\Delta\rho_{min} = -0.95$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.225869 (11)	0.04646 (19)	0.45773 (4)	0.0389 (2)
Br2	0.249896 (11)	0.45935 (19)	0.34532 (4)	0.0366 (2)
01	0.17000 (7)	-0.1276 (11)	0.2145 (3)	0.0297 (10)
O2	0.18712 (7)	0.2238 (10)	0.1327 (2)	0.0276 (10)
C1	0.21452 (10)	0.1098 (16)	0.3549 (3)	0.0268 (14)
C2	0.22418 (8)	0.2811 (14)	0.3103 (3)	0.0220 (12)
C3	0.21497 (10)	0.3305 (15)	0.2353 (4)	0.0287 (14)
H3	0.2212	0.4568	0.2059	0.034*
C4	0.19705 (9)	0.1950 (15)	0.2051 (3)	0.0244 (13)
C5	0.18738 (9)	0.0024 (15)	0.2497 (4)	0.0268 (14)
C6	0.19618 (9)	-0.0303 (15)	0.3267 (4)	0.0265 (14)
H6	0.1897	-0.1443	0.3578	0.032*
C7	0.15963 (10)	-0.3154 (15)	0.2613 (4)	0.0300 (14)
H7A	0.1542	-0.1931	0.2968	0.036*
H7B	0.1691	-0.4591	0.2888	0.036*
C8	0.14293 (10)	-0.4722 (15)	0.2110 (4)	0.0271 (13)
H8A	0.1372	-0.6189	0.2401	0.033*
H8B	0.1486	-0.5802	0.1738	0.033*
C9	0.12568 (10)	-0.2721 (15)	0.1703 (4)	0.0279 (14)
H9A	0.1213	-0.1412	0.2065	0.034*
H9B	0.1309	-0.1473	0.1348	0.034*
C10	0.10730 (10)	-0.4473 (17)	0.1288 (4)	0.0317 (15)
H10A	0.1117	-0.5768	0.0924	0.038*
H10B	0.1022	-0.5737	0.1644	0.038*
C11	0.09000 (10)	-0.2517 (16)	0.0889 (4)	0.0302 (14)
H11A	0.0950	-0.1239	0.0536	0.036*
H11B	0.0854	-0.1240	0.1253	0.036*
C12	0.07198 (11)	-0.4314 (17)	0.0473 (5)	0.0373 (17)
H12A	0.0764	-0.5476	0.0084	0.045*
H12B	0.0677	-0.5705	0.0819	0.045*
C13	0.05388 (11)	-0.2398 (17)	0.0119 (4)	0.0341 (15)
H13A	0.0490	-0.1321	0.0511	0.041*
H13B	0.0584	-0.0933	-0.0206	0.041*
C14	0.03652 (11)	-0.4177 (19)	-0.0328 (5)	0.0409 (18)
H14A	0.0318	-0.5605	0.0000	0.049*
H14B	0.0415	-0.5296	-0.0711	0.049*
C15	0.01860 (12)	-0.223 (2)	-0.0699 (5)	0.049 (2)
H15A	0.0133	-0.1163	-0.0314	0.059*
H15B	0.0234	-0.0765	-0.1016	0.059*
C16	0.00144 (13)	-0.403 (3)	-0.1167 (6)	0.067 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H16A	-0.0093	-0.2705	-0.1387	0.101*
H16B	-0.0036	-0.5456	-0.0855	0.101*
H16C	0.0065	-0.5067	-0.1556	0.101*
C17	0.19550 (10)	0.4289 (15)	0.0888 (4)	0.0280 (14)
H17A	0.2090	0.3645	0.0836	0.034*
H17B	0.1966	0.6247	0.1121	0.034*
C18	0.18131 (11)	0.4434 (18)	0.0114 (4)	0.0367 (16)
H18A	0.1875	0.5674	-0.0217	0.044*
H18B	0.1796	0.2440	-0.0099	0.044*
C19	0.16053 (11)	0.5708 (18)	0.0163 (4)	0.0341 (16)
H19A	0.1536	0.4312	0.0435	0.041*
H19B	0.1624	0.7562	0.0445	0.041*
C20	0.14738 (11)	0.6299 (18)	-0.0591 (4)	0.0343 (16)
H20A	0.1456	0.4440	-0.0870	0.041*
H20B	0.1544	0.7682	-0.0862	0.041*
C21	0.12653 (12)	0.758 (2)	-0.0558 (4)	0.0394 (18)
H21A	0.1283	0.9427	-0.0272	0.047*
H21B	0.1193	0.6185	-0.0297	0.047*
C22	0.11359 (12)	0.822 (2)	-0.1328 (4)	0.0416 (18)
H22A	0.1120	0.6397	-0.1620	0.050*
H22B	0.1205	0.9672	-0.1585	0.050*
C23	0.09249 (12)	0.944 (2)	-0.1275 (4)	0.045 (2)
H23A	0.0941	1.1203	-0.0960	0.055*
H23B	0.0853	0.7944	-0.1041	0.055*
C24	0.07956 (12)	1.026 (2)	-0.2054 (4)	0.047 (2)
H24A	0.0864	1.1828	-0.2278	0.057*
H24B	0.0785	0.8521	-0.2379	0.057*
C25	0.05857 (14)	1.129 (3)	-0.2000 (5)	0.075 (4)
H25A	0.0596	1.3030	-0.1677	0.090*
H25B	0.0518	0.9723	-0.1776	0.090*
C26	0.04596 (15)	1.209 (3)	-0.2762 (6)	0.076 (4)
H26A	0.0327	1.2735	-0.2705	0.114*
H26B	0.0447	1.0358	-0.3081	0.114*
H26C	0.0525	1.3664	-0.2982	0.114*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0387 (4)	0.0495 (5)	0.0265 (4)	-0.0037 (3)	0.0012 (3)	0.0035 (3)
Br2	0.0304 (4)	0.0450 (4)	0.0334 (4)	-0.0083 (3)	0.0035 (3)	-0.0020 (3)
01	0.029 (2)	0.033 (3)	0.026 (2)	-0.006 (2)	0.0024 (18)	-0.001 (2)
02	0.034 (2)	0.023 (2)	0.025 (2)	-0.0042 (19)	0.0049 (18)	0.0005 (19)
C1	0.035 (3)	0.029 (3)	0.014 (3)	0.010 (3)	-0.001 (2)	0.003 (3)
C2	0.014 (3)	0.025 (3)	0.027 (3)	-0.004 (2)	0.004 (2)	-0.008 (3)
C3	0.035 (3)	0.025 (3)	0.028 (3)	0.002 (3)	0.014 (3)	0.003 (3)
C4	0.028 (3)	0.023 (3)	0.021 (3)	0.005 (3)	0.004 (2)	0.000 (3)
C5	0.017 (3)	0.026 (3)	0.040 (4)	-0.003 (2)	0.011 (3)	-0.001 (3)
C6	0.022 (3)	0.024 (3)	0.035 (4)	0.003 (3)	0.009 (3)	0.008 (3)
C7	0.036 (3)	0.023 (3)	0.033 (3)	-0.001 (3)	0.013 (3)	0.009 (3)
C8	0.036 (3)	0.021 (3)	0.026 (3)	0.000 (3)	0.009 (3)	0.001 (3)

C9	0.031 (3)	0.022 (3)	0.035 (3)	-0.004 (3)	0.015 (3)	-0.004 (3)	
C10	0.034 (3)	0.033 (4)	0.031 (3)	0.000 (3)	0.011 (3)	0.006 (3)	
C11	0.035 (3)	0.027 (3)	0.029 (3)	-0.002 (3)	0.008 (3)	-0.001 (3)	
C12	0.034 (4)	0.028 (4)	0.049 (4)	-0.004 (3)	0.006 (3)	-0.001 (3)	
C13	0.039 (4)	0.032 (4)	0.030 (3)	0.000 (3)	0.004 (3)	-0.006 (3)	
C14	0.039 (4)	0.036 (4)	0.047 (4)	-0.001 (3)	0.007 (3)	-0.003 (4)	
C15	0.037 (4)	0.043 (5)	0.065 (6)	-0.001 (4)	0.005 (4)	-0.003 (4)	
C16	0.038 (5)	0.068 (7)	0.085 (8)	-0.004 (5)	-0.013 (5)	0.006 (6)	
C17	0.037 (3)	0.021 (3)	0.029 (3)	0.001 (3)	0.016 (3)	0.011 (3)	
C18	0.039 (4)	0.035 (4)	0.035 (4)	0.001 (3)	0.006 (3)	0.001 (3)	
C19	0.045 (4)	0.039 (4)	0.017 (3)	0.001 (3)	0.005 (3)	-0.003 (3)	
C20	0.041 (4)	0.042 (4)	0.020 (3)	0.005 (3)	0.005 (3)	0.003 (3)	
C21	0.049 (4)	0.056 (5)	0.016 (3)	0.006 (4)	0.011 (3)	0.005 (3)	
C22	0.045 (4)	0.051 (5)	0.028 (4)	0.003 (4)	0.005 (3)	0.006 (4)	
C23	0.044 (4)	0.064 (6)	0.030 (4)	0.007 (4)	0.012 (3)	0.008 (4)	
C24	0.041 (4)	0.069 (6)	0.031 (4)	0.007 (4)	0.005 (3)	-0.001 (4)	
C25	0.048 (5)	0.129 (11)	0.046 (5)	0.028 (6)	0.006 (4)	0.022 (7)	
C26	0.050 (5)	0.125 (11)	0.051 (6)	0.024 (7)	0.002 (4)	0.018 (7)	

Geometric parameters (Å, °)

Br2—C2 $1.895(6)$ C15—C16 $1.523(12)$ O1—C5 $1.348(8)$ C15—H15A 0.9700 O1—C7 $1.465(8)$ C15—H15B 0.9700 O2—C4 $1.365(7)$ C16—H16A 0.9600 O2—C17 $1.405(7)$ C16—H16B 0.9600 C1—C2 $1.369(9)$ C16—H16C 0.9600 C1—C6 $1.387(9)$ C17—C18 $1.543(10)$ C2—C3 $1.406(9)$ C17—H17A 0.9700 C3—C4 $1.363(9)$ C17—H17B 0.9700 C3—H3 0.9300 C18—C19 $1.525(10)$ C4—C5 $1.425(9)$ C18—H18A 0.9700 C5—C6 $1.421(9)$ C18—H18B 0.9700 C6—H6 0.9300 C19—C20 $1.506(9)$
O1—C51.348 (8)C15—H15A0.9700O1—C71.465 (8)C15—H15B0.9700O2—C41.365 (7)C16—H16A0.9600O2—C171.405 (7)C16—H16B0.9600C1—C21.369 (9)C16—H16C0.9600C1—C61.387 (9)C17—C181.543 (10)C2—C31.406 (9)C17—H17A0.9700C3—C41.363 (9)C17—H17B0.9700C3—H30.9300C18—C191.525 (10)C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
O1—C71.465 (8)C15—H15B0.9700O2—C41.365 (7)C16—H16A0.9600O2—C171.405 (7)C16—H16B0.9600C1—C21.369 (9)C16—H16C0.9600C1—C61.387 (9)C17—C181.543 (10)C2—C31.406 (9)C17—H17A0.9700C3—C41.363 (9)C17—H17B0.9700C3—H30.9300C18—C191.525 (10)C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
O2—C41.365 (7)C16—H16A0.9600O2—C171.405 (7)C16—H16B0.9600C1—C21.369 (9)C16—H16C0.9600C1—C61.387 (9)C17—C181.543 (10)C2—C31.406 (9)C17—H17A0.9700C3—C41.363 (9)C17—H17B0.9700C3—H30.9300C18—C191.525 (10)C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
O2—C171.405 (7)C16—H16B0.9600C1—C21.369 (9)C16—H16C0.9600C1—C61.387 (9)C17—C181.543 (10)C2—C31.406 (9)C17—H17A0.9700C3—C41.363 (9)C17—H17B0.9700C3—H30.9300C18—C191.525 (10)C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
C1—C21.369 (9)C16—H16C0.9600C1—C61.387 (9)C17—C181.543 (10)C2—C31.406 (9)C17—H17A0.9700C3—C41.363 (9)C17—H17B0.9700C3—H30.9300C18—C191.525 (10)C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
C1—C61.387 (9)C17—C181.543 (10)C2—C31.406 (9)C17—H17A0.9700C3—C41.363 (9)C17—H17B0.9700C3—H30.9300C18—C191.525 (10)C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
C2—C31.406 (9)C17—H17A0.9700C3—C41.363 (9)C17—H17B0.9700C3—H30.9300C18—C191.525 (10)C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
C3—C41.363 (9)C17—H17B0.9700C3—H30.9300C18—C191.525 (10)C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
C3—H30.9300C18—C191.525 (10)C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
C4—C51.425 (9)C18—H18A0.9700C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
C5—C61.421 (9)C18—H18B0.9700C6—H60.9300C19—C201.506 (9)
С6—Н6 0.9300 С19—С20 1.506 (9)
C7—C8 1.479 (9) C19—H19A 0.9700
C7—H7A 0.9700 C19—H19B 0.9700
C7—H7B 0.9700 C20—C21 1.524 (10)
C8—C9 1.535 (9) C20—H20A 0.9700
C8—H8A 0.9700 C20—H20B 0.9700
C8—H8B 0.9700 C21—C22 1.528 (9)
C9—C10 1.531 (9) C21—H21A 0.9700
C9—H9A 0.9700 C21—H21B 0.9700
C9—H9B 0.9700 C22—C23 1.536 (11)
C10—C11 1.521 (9) C22—H22A 0.9700
C10—H10A 0.9700 C22—H22B 0.9700
C10—H10B 0.9700 C23—C24 1.558 (10)
C11—C12 1.525 (9) C23—H23A 0.9700
C11—H11A 0.9700 C23—H23B 0.9700
C11—H11B 0.9700 C24—C25 1.504 (12)

C12—C13	1.522 (10)	C24—H24A	0.9700
C12—H12A	0.9700	C24—H24B	0.9700
C12—H12B	0.9700	C25—C26	1.522 (12)
C13—C14	1.511 (10)	C25—H25A	0.9700
C13—H13A	0.9700	C25—H25B	0.9700
C13—H13B	0.9700	C26—H26A	0.9600
C14—C15	1.530 (11)	C26—H26B	0.9600
C14—H14A	0.9700	C26—H26C	0.9600
C5—O1—C7	115.7 (5)	C14—C15—H15A	109.0
C4—O2—C17	116.1 (5)	C16—C15—H15B	109.0
C2—C1—C6	121.3 (6)	C14—C15—H15B	109.0
C2—C1—Br1	121.6 (5)	H15A—C15—H15B	107.8
C6—C1—Br1	117.0 (5)	C15—C16—H16A	109.5
C1—C2—C3	119.8 (6)	C15—C16—H16B	109.5
C1—C2—Br2	122.7 (5)	H16A—C16—H16B	109.5
C3—C2—Br2	117.5 (5)	C15—C16—H16C	109.5
C4—C3—C2	120.6 (6)	H16A—C16—H16C	109.5
С4—С3—Н3	119.7	H16B—C16—H16C	109.5
С2—С3—Н3	119.7	O2—C17—C18	107.8 (6)
C3—C4—O2	125.1 (6)	O2—C17—H17A	110.2
C3—C4—C5	120.1 (6)	C18—C17—H17A	110.2
O2—C4—C5	114.8 (6)	O2—C17—H17B	110.2
01-C5-C6	125.5 (6)	C18—C17—H17B	110.2
01-C5-C4	115.9 (6)	H17A—C17—H17B	108.5
C6-C5-C4	118.6 (6)	C19-C18-C17	111.7 (6)
C1—C6—C5	119.2 (6)	C19—C18—H18A	109.3
C1—C6—H6	120.4	C17—C18—H18A	109.3
C5—C6—H6	120.4	C19—C18—H18B	109.3
01 - C7 - C8	107.4 (5)	C17—C18—H18B	109.3
01—C7—H7A	110.2	H18A—C18—H18B	107.9
C8—C7—H7A	110.2	C_{20} C_{19} C_{18}	113.0 (6)
01—C7—H7B	110.2	C20-C19-H19A	109.0
C8—C7—H7B	110.2	C18—C19—H19A	109.0
H7A - C7 - H7B	108.5	C20-C19-H19B	109.0
C7-C8-C9	115.6 (6)	C18—C19—H19B	109.0
C7—C8—H8A	108.4	H19A—C19—H19B	107.8
C9-C8-H8A	108.4	C19-C20-C21	114.1 (6)
C7-C8-H8B	108.4	C19—C20—H20A	108 7
C9-C8-H8B	108.4	$C_{1} = C_{2} = C_{2} = H_{2} = H_{2}$	108.7
H8A - C8 - H8B	107.4	C19—C20—H20B	108.7
C10-C9-C8	113.5 (6)	$C_{1} = C_{20} = H_{20B}$	108.7
C10-C9-H9A	108.9	$H_{20A} - C_{20} - H_{20B}$	107.6
C8—C9—H9A	108.9	C_{20} C_{21} C_{22}	113 3 (6)
C10—C9—H9B	108.9	$C_{20} - C_{21} - H_{21A}$	108.9
C8-C9-H9B	108.9	C_{22} C_{21} H_{21A}	108.9
H9A_C9_H9B	107.7	C_{20} C_{21} H_{21R}	108.9
$C_{11} - C_{10} - C_{9}$	114 1 (6)	C22—C21—H21B	108.9
C11—C10—H10A	108.7	$H_{21}A - C_{21} - H_{21}B$	107.7
			10/./

C9—C10—H10A	108.7	C21—C22—C23	112.0 (6)
C11—C10—H10B	108.7	C21—C22—H22A	109.2
С9—С10—Н10В	108.7	C23—C22—H22A	109.2
H10A—C10—H10B	107.6	C21—C22—H22B	109.2
C10—C11—C12	113.1 (6)	C23—C22—H22B	109.2
C10—C11—H11A	109.0	H22A—C22—H22B	107.9
C12—C11—H11A	109.0	C22—C23—C24	112.5 (6)
C10—C11—H11B	109.0	С22—С23—Н23А	109.1
C12—C11—H11B	109.0	C24—C23—H23A	109.1
H11A—C11—H11B	107.8	С22—С23—Н23В	109.1
C13—C12—C11	113.8 (6)	C24—C23—H23B	109.1
C13—C12—H12A	108.8	H23A—C23—H23B	107.8
C11—C12—H12A	108.8	C25—C24—C23	112.0 (7)
C13—C12—H12B	108.8	C25—C24—H24A	109.2
C11—C12—H12B	108.8	C23—C24—H24A	109.2
H12A—C12—H12B	107.7	C25—C24—H24B	109.2
C14—C13—C12	113.6 (6)	C23—C24—H24B	109.2
C14—C13—H13A	108.9	H24A—C24—H24B	107.9
C12—C13—H13A	108.9	C24—C25—C26	111.9 (8)
C14—C13—H13B	108.9	С24—С25—Н25А	109.2
C12—C13—H13B	108.9	С26—С25—Н25А	109.2
H13A—C13—H13B	107.7	C24—C25—H25B	109.2
C13—C14—C15	113.4 (7)	С26—С25—Н25В	109.2
C13—C14—H14A	108.9	H25A—C25—H25B	107.9
C15—C14—H14A	108.9	С25—С26—Н26А	109.5
C13—C14—H14B	108.9	C25—C26—H26B	109.5
C15—C14—H14B	108.9	H26A—C26—H26B	109.5
H14A—C14—H14B	107.7	С25—С26—Н26С	109.5
C16—C15—C14	113.0 (8)	H26A—C26—H26C	109.5
C16—C15—H15A	109.0	H26B—C26—H26C	109.5
C6—C1—C2—C3	3.4 (10)	C4—C5—C6—C1	-4.1 (9)
Br1—C1—C2—C3	-177.9 (5)	C5—O1—C7—C8	-171.5 (5)
C6—C1—C2—Br2	-176.7 (5)	O1—C7—C8—C9	-66.3 (7)
Br1—C1—C2—Br2	2.0 (8)	O2—C17—C18—C19	65.0 (8)
C1—C2—C3—C4	-3.9 (10)	C7—C8—C9—C10	-171.0 (6)
Br2—C2—C3—C4	176.1 (5)	C8—C9—C10—C11	179.4 (6)
C2—C3—C4—O2	-178.7 (6)	C9—C10—C11—C12	179.4 (6)
C2—C3—C4—C5	0.4 (10)	C10-C11-C12-C13	175.6 (6)
C17—O2—C4—C3	-5.4 (9)	C11—C12—C13—C14	176.9 (7)
C17—O2—C4—C5	175.5 (6)	C12—C13—C14—C15	-178.5 (7)
C7—O1—C5—C6	0.4 (9)	C13—C14—C15—C16	178.2 (8)
C7—O1—C5—C4	-177.5 (6)	C4—O2—C17—C18	-176.2 (5)
C3—C4—C5—O1	-178.3 (6)	C17—C18—C19—C20	171.6 (6)
O2—C4—C5—O1	0.8 (8)	C18—C19—C20—C21	-179.8 (7)
C3—C4—C5—C6	3.6 (9)	C19—C20—C21—C22	178.9 (7)
O2—C4—C5—C6	-177.2 (6)	C20—C21—C22—C23	178.5 (7)
C2-C1-C6-C5	0.7 (10)	C21—C22—C23—C24	177.0 (8)
Br1-C1-C6-C5	-178.1 (5)	C22—C23—C24—C25	177.0 (9)

01—C5—C6—C1	178.0 (6)	C23—C24—C25—C26	-179.9 (10)
-------------	-----------	-----------------	-------------

F(000) = 1528

 $\theta = 3.6 - 29.0^{\circ}$

 $\mu = 2.13 \text{ mm}^{-1}$

Plate. colourless

 $0.58 \times 0.32 \times 0.10 \text{ mm}$

16641 measured reflections

 $\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 3.6^\circ$

6905 independent reflections

4926 reflections with $I > 2\sigma(I)$

T = 294 K

 $R_{\rm int} = 0.024$

 $h = -55 \rightarrow 63$

 $k = -10 \rightarrow 10$

 $l = -11 \rightarrow 11$

 $D_{\rm x} = 1.231 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71069$ Å

Cell parameters from 8379 reflections

(III) 1,2-Dibromo-4,5-bis(hexadecyloxy)benzene

Crystal data

C₃₈H₆₈Br₂O₂ $M_r = 716.72$ Monoclinic, *Cc* Hall symbol: C -2yc a = 50.158 (5) Å b = 8.360 (3) Å c = 9.248 (3) Å $\beta = 94.136 (5)^{\circ}$ $V = 3868 (2) \text{ Å}^3$ Z = 4

Data collection

Oxford Gemini S Ultra CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans, thick slices Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\min} = 0.45, T_{\max} = 0.82$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.024$ H-atom parameters constrained $wR(F^2) = 0.053$ $w = 1/[\sigma^2(F_0^2) + (0.0318P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ S = 0.846905 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$ 379 parameters 2 restraints $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack (1983), with how many Friedel pairs? direct methods Secondary atom site location: difference Fourier Flack parameter: 0.087 (5) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

racional atomic coorannees and isonopic or equivalent isonopic aisplacement parameters (11)					
	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.265200 (6)	0.10931 (4)	0.61498 (3)	0.08034 (10)	
Br2	0.233107 (6)	0.31448 (4)	0.34048 (2)	0.07120 (9)	
01	0.18247 (3)	0.24640 (17)	0.90673 (14)	0.0424 (3)	
O2	0.15942 (3)	0.4158 (2)	0.70339 (15)	0.0475 (4)	

0.6346(2)

0.0460(5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

0.2101(3)

Acta Cryst. (2013). C69, 204-208

0.23212(4)

C1

C2	0.21907 (4)	0.2945 (3)	0.5242 (2)	0.0437 (5)
C3	0.19459 (4)	0.3661 (3)	0.5428 (2)	0.0423 (5)
Н3	0.1859	0.4242	0.4678	0.051*
C4	0.18326 (4)	0.3503 (2)	0.6741 (2)	0.0363 (5)
C5	0.19608 (4)	0.2611 (2)	0.7859 (2)	0.0359 (5)
C6	0.22054 (4)	0.1931 (3)	0.7672 (2)	0.0411 (5)
H6	0.2294	0.1359	0.8424	0.049*
C7	0.19065 (4)	0.1218 (3)	1.0097 (2)	0.0447 (5)
H7A	0.2063	0.1552	1.0697	0.054*
H7B	0.1949	0.0245	0.9592	0.054*
C8	0.16749 (4)	0.0940 (3)	1.1017 (2)	0.0439 (5)
H8A	0.1633	0.1932	1.1494	0.053*
H8B	0.1727	0.0162	1.1763	0.053*
С9	0.14270 (4)	0.0343 (3)	1.0145 (2)	0.0449 (5)
H9A	0.1475	-0.0583	0.9589	0.054*
H9B	0.1367	0.1169	0.9462	0.054*
C10	0.11952 (4)	-0.0115 (3)	1.1042 (2)	0.0458 (5)
H11A	0.1251	-0.0986	1.1687	0.055*
H11B	0.1152	0.0791	1.1637	0.055*
C11	0.09473(5)	-0.0619(3)	1.0130 (2)	0.0494 (6)
H10A	0.0992	-0.1534	0.9549	0.059*
H10B	0.0896	0.0246	0.9467	0.059*
C12	0.07085 (4)	-0.1052(3)	1.0966 (2)	0.0489 (6)
H12A	0.0758	-0.1930	1 1616	0.059*
H12R	0.0664	-0.0143	1 1 5 5 4	0.059*
C13	0.04641(5)	-0.1527(3)	1.0012(3)	0.0513 (6)
H13A	0.0510	-0.2439	0.9430	0.062*
H13R	0.0417	-0.0651	0.9354	0.062*
C14	0.02199(5)	-0.1954(3)	1.0813(2)	0.0507 (6)
H14A	0.0265	-0 2841	1 1462	0.061*
H14R	0.0174	-0.1048	1.1402	0.061*
C15	-0.00213(5)	-0.2403(3)	0.9834(2)	0.001 0.0542(6)
H15A	0.00213 (5)	-0.3307	0.9245	0.0542 (0)
H15R	-0.0020	-0.1516	0.9243	0.005
C16	-0.02704(5)	-0.2835(3)	1.0589 (2)	0.005
U16A	-0.02704(3)	-0.2736	1.0309 (2)	0.0541 (0)
HIGA HIGB	-0.0230	-0.1038	1.1220	0.005*
C17	-0.05075(5)	-0.3254(3)	0.0581(3)	0.005°
	-0.0460	-0.4148	0.9381 (3)	0.0508 (7)
П1/А 1117D	-0.0400	-0.4140	0.0903	0.008*
	-0.0348 -0.07507(5)	-0.2332 -0.2604(2)	0.8943	0.008°
	-0.07397 (3)	-0.3094(3)	1.0318 (3)	0.0307 (0)
	-0.0721	-0.4003	1.0949	0.008
HI8B C10	-0.0808	-0.2804	1.0919	0.068*
	-0.09948 (5)	-0.4099 (3)	0.9274 (3)	0.0399 (7)
П19А 1110D	-0.0940	-0.4989	0.80/3	0.072*
П19 В	-0.1032	-0.3190	0.0040	$0.0/2^{*}$
	-0.12493 (5)	-0.4555 (3)	0.9980 (3)	0.0006 (/)
H20A	-0.1213	-0.5444	1.0015	0.073*
H20B	-0.1299	-0.3645	1.05/6	0.0/3*

C21	-0.14827 (5)	-0.4942 (4)	0.8926 (3)	0.0752 (8)
H21A	-0.1433	-0.5831	0.8329	0.090*
H21B	-0.1520	-0.4032	0.8292	0.090*
C22	-0.17372 (6)	-0.5381(5)	0.9634 (4)	0.0953 (10)
H22A	-0.1876	-0.5615	0.8897	0.143*
H22B	-0.1791	-0.4500	1.0214	0.143*
H22C	-0.1705	-0.6304	1.0239	0.143*
C23	0.14154 (4)	0.4670 (3)	0.5843 (2)	0.0419 (5)
H23A	0.1381	0.3803	0.5158	0.050*
H23B	0.1491	0.5562	0.5341	0.050*
C24	0.11629 (4)	0.5164 (3)	0.6499 (2)	0.0442 (5)
H24A	0.1202	0.6058	0.7148	0.053*
H24B	0.1102	0.4284	0.7074	0.053*
C25	0.09390 (4)	0.5642 (3)	0.5396 (2)	0.0451 (5)
H25A	0.0998	0.6536	0.4831	0.054*
H25B	0.0900	0.4755	0.4738	0.054*
C26	0.06862 (4)	0.6109 (3)	0.6091 (2)	0.0482 (6)
H26A	0.0726	0.7009	0.6732	0.058*
H26B	0.0633	0.5223	0.6683	0.058*
C27	0.04518 (5)	0.6556 (3)	0.5000	0.0495 (6)
H27A	0.0503	0.7454	0.4457	0.059*
H27R	0.0411	0.5662	0.4394	0.059*
C28	0.0411 0.02041(4)	0.6994(3)	0.5790 (2)	0.0495 (6)
H28A	0.0246	0.7888	0.6434	0.059*
H28R	0.0156	0.7000	0.6384	0.059*
C29	-0.00362(5)	0.0090 0.7435 (3)	0.0384 0.4789(2)	0.059
H20A	-0.00302(5)	0.6546	0.4789(2) 0.4142	0.062*
1129A	0.0080	0.8342	0.4142	0.062*
C30	-0.02816(4)	0.8342 0.7856 (3)	0.4201 0.5588 (2)	0.002°
	-0.0225	0.7850 (5)	0.5388 (2)	0.0522 (0)
1130A 1130A	-0.0227	0.0951	0.6221	0.063*
П30Б С21	-0.0237 -0.05271(5)	0.8748	0.0231 0.4630(3)	0.003°
	-0.03271(3)	0.8290 (3)	0.4030 (3)	0.0555 (0)
	-0.03/4	0.7397	0.3991	0.004*
	-0.0480	0.9190	0.4031	0.004°
C32	-0.07074(4)	0.8709 (3)	0.3480(2)	0.0343 (0)
H32A 1122D	-0.0806	0.7807	0.6091	0.065*
П32Б	-0.0720	0.9007	0.0110	0.063
	-0.101/5(5)	0.9127 (5)	0.4554 (2)	0.0542 (6)
H33A	-0.1066	0.8231	0.3923	0.065*
H33B	-0.0980	1.0033	0.3946	0.065*
C34	-0.12536 (5)	0.9535 (3)	0.5426 (3)	0.0562 (6)
H34A	-0.1289	0.8629	0.6039	0.06/*
H34B	-0.1205	1.0431	0.6057	0.06/*
C35	-0.15089 (5)	0.9956 (3)	0.4526 (3)	0.0573 (7)
H35A	-0.1560	0.9055	0.3907	0.069*
НЗЭВ	-0.14/4	1.0855	0.3904	0.069*
C36	-0.17411 (5)	1.0383 (4)	0.5426 (3)	0.0585 (7)
H36A	-0.17/1	0.9498	0.6072	0.070*
H36B	-0.1691	1.1305	0.6021	0.070*

C37	-0.19989 (5)	1.0751 (4)	0.4554 (3)	0.0706 (9)	
H37A	-0.2055	0.9813	0.3994	0.085*	
H37B	-0.1968	1.1606	0.3878	0.085*	
C38	-0.22209 (6)	1.1239 (4)	0.5483 (3)	0.0829 (9)	
H38A	-0.2381	1.1441	0.4875	0.124*	
H38B	-0.2170	1.2193	0.6011	0.124*	
H38C	-0.2253	1.0395	0.6152	0.124*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.03922 (15)	0.1009 (2)	0.1034 (2)	0.02751 (17)	0.02233 (13)	0.0018 (2)
Br2	0.05548 (17)	0.1022 (2)	0.05902 (13)	0.00078 (17)	0.02555 (11)	-0.00573 (16)
01	0.0394 (9)	0.0432 (8)	0.0460 (8)	0.0086 (7)	0.0122 (6)	0.0078 (7)
O2	0.0338 (9)	0.0651 (11)	0.0443 (8)	0.0207 (8)	0.0067 (6)	0.0098 (7)
C1	0.0251 (11)	0.0487 (15)	0.0649 (14)	0.0019 (10)	0.0069 (10)	-0.0076 (11)
C2	0.0369 (12)	0.0472 (14)	0.0488 (12)	-0.0037 (11)	0.0144 (10)	-0.0078 (10)
C3	0.0329 (13)	0.0474 (15)	0.0468 (12)	0.0016 (10)	0.0046 (9)	0.0010 (10)
C4	0.0234 (11)	0.0374 (13)	0.0480 (12)	0.0027 (9)	0.0029 (8)	-0.0030 (9)
C5	0.0263 (11)	0.0344 (11)	0.0470 (12)	-0.0037 (9)	0.0038 (9)	-0.0028 (9)
C6	0.0225 (11)	0.0460 (14)	0.0543 (12)	0.0021 (10)	-0.0007 (9)	-0.0010 (10)
C7	0.0286 (12)	0.0523 (15)	0.0523 (13)	0.0059 (11)	-0.0037 (10)	0.0133 (11)
C8	0.0394 (12)	0.0516 (14)	0.0397 (11)	0.0025 (11)	-0.0042 (9)	0.0122 (10)
C9	0.0354 (13)	0.0558 (14)	0.0432 (12)	-0.0045 (11)	0.0016 (9)	0.0021 (10)
C10	0.0399 (13)	0.0567 (15)	0.0409 (11)	-0.0069 (11)	0.0032 (9)	0.0032 (10)
C11	0.0399 (14)	0.0607 (16)	0.0483 (13)	-0.0076 (11)	0.0071 (10)	0.0016 (10)
C12	0.0372 (13)	0.0618 (15)	0.0481 (12)	-0.0042 (12)	0.0051 (10)	0.0010 (11)
C13	0.0393 (15)	0.0642 (16)	0.0512 (13)	-0.0077 (12)	0.0079 (10)	-0.0020 (11)
C14	0.0363 (13)	0.0621 (16)	0.0538 (13)	-0.0066 (12)	0.0037 (10)	0.0015 (12)
C15	0.0424 (15)	0.0686 (18)	0.0522 (13)	-0.0082 (12)	0.0084 (11)	0.0003 (11)
C16	0.0382 (14)	0.0708 (18)	0.0534 (13)	-0.0072 (12)	0.0045 (10)	0.0008 (12)
C17	0.0389 (15)	0.0754 (18)	0.0573 (14)	-0.0093 (13)	0.0110 (11)	0.0054 (12)
C18	0.0370 (14)	0.0742 (18)	0.0594 (14)	-0.0102 (12)	0.0074 (10)	0.0035 (12)
C19	0.0399 (14)	0.082 (2)	0.0582 (15)	-0.0121 (14)	0.0093 (11)	0.0050 (13)
C20	0.0395 (14)	0.0783 (18)	0.0646 (15)	-0.0063 (13)	0.0087 (11)	0.0055 (13)
C21	0.0376 (15)	0.105 (3)	0.0832 (19)	-0.0136 (16)	0.0081 (13)	0.0021 (16)
C22	0.0400 (18)	0.129 (3)	0.118 (3)	-0.0182 (19)	0.0089 (16)	0.008 (2)
C23	0.0280 (12)	0.0506 (14)	0.0474 (12)	0.0052 (10)	0.0050 (9)	0.0082 (10)
C24	0.0329 (12)	0.0549 (15)	0.0453 (12)	0.0069 (11)	0.0068 (9)	0.0058 (10)
C25	0.0312 (12)	0.0568 (15)	0.0482 (12)	0.0095 (11)	0.0081 (9)	0.0039 (10)
C26	0.0313 (12)	0.0657 (16)	0.0478 (12)	0.0115 (12)	0.0041 (9)	0.0027 (11)
C27	0.0341 (13)	0.0648 (16)	0.0502 (13)	0.0098 (12)	0.0061 (10)	0.0013 (11)
C28	0.0314 (12)	0.0655 (17)	0.0515 (12)	0.0112 (11)	0.0028 (9)	-0.0006 (11)
C29	0.0343 (13)	0.0702 (17)	0.0514 (13)	0.0092 (12)	0.0062 (10)	-0.0001 (11)
C30	0.0301 (12)	0.0715 (18)	0.0548 (13)	0.0124 (11)	0.0027 (9)	0.0017 (12)
C31	0.0357 (14)	0.0724 (18)	0.0528 (13)	0.0109 (12)	0.0063 (11)	0.0027 (12)
C32	0.0297 (12)	0.0799 (18)	0.0535 (13)	0.0136 (12)	0.0010 (10)	0.0025 (11)
C33	0.0378 (13)	0.0763 (19)	0.0488 (13)	0.0083 (12)	0.0043 (10)	0.0019 (12)
C34	0.0290 (13)	0.0838 (18)	0.0557 (14)	0.0123 (13)	0.0026 (10)	0.0023 (12)
C35	0.0388 (14)	0.083 (2)	0.0503 (13)	0.0137 (13)	0.0056 (10)	0.0026 (13)

C36	0.0384 (14)	0.0829 (19)	0.0542 (14)	0.0110 (13)	0.0026 (11)	-0.0015 (13)
C37	0.0430 (17)	0.101 (3)	0.0682 (18)	0.0147 (16)	0.0033 (13)	0.0016 (16)
C38	0.0439 (17)	0.112 (3)	0.092 (2)	0.0294 (17)	0.0051 (14)	-0.0060 (19)

Geometric parameters (Å, °)

Br1—C1	1.881 (2)	C20—H20B	0.9700
Br2—C2	1.893 (2)	C21—C22	1.521 (4)
01—C5	1.357 (2)	C21—H21A	0.9700
O1—C7	1.451 (3)	C21—H21B	0.9700
O2—C4	1.360 (2)	C22—H22A	0.9600
O2—C23	1.435 (3)	C22—H22B	0.9600
C1—C2	1.369 (3)	C22—H22C	0.9600
C1—C6	1.401 (3)	C23—C24	1.501 (3)
C2—C3	1.388 (3)	C23—H23A	0.9700
C3—C4	1.383 (3)	C23—H23B	0.9700
С3—Н3	0.9300	C24—C25	1.515 (3)
C4—C5	1.393 (3)	C24—H24A	0.9700
C5—C6	1.374 (3)	C24—H24B	0.9700
С6—Н6	0.9300	C25—C26	1.514 (3)
C7—C8	1.506 (3)	C25—H25A	0.9700
С7—Н7А	0.9700	C25—H25B	0.9700
С7—Н7В	0.9700	C26—C27	1.516 (3)
C8—C9	1.517 (3)	C26—H26A	0.9700
C8—H8A	0.9700	C26—H26B	0.9700
C8—H8B	0.9700	C27—C28	1.510 (3)
C9—C10	1.525 (3)	C27—H27A	0.9700
С9—Н9А	0.9700	C27—H27B	0.9700
С9—Н9В	0.9700	C28—C29	1.511 (3)
C10—C11	1.512 (3)	C28—H28A	0.9700
C10—H11A	0.9700	C28—H28B	0.9700
C10—H11B	0.9700	C29—C30	1.522 (3)
C11—C12	1.515 (3)	С29—Н29А	0.9700
C11—H10A	0.9700	С29—Н29В	0.9700
C11—H10B	0.9700	C30—C31	1.508 (3)
C12—C13	1.511 (3)	С30—Н30А	0.9700
C12—H12A	0.9700	С30—Н30В	0.9700
C12—H12B	0.9700	C31—C32	1.526 (3)
C13—C14	1.519 (3)	C31—H31A	0.9700
C13—H13A	0.9700	C31—H31B	0.9700
C13—H13B	0.9700	C32—C33	1.508 (3)
C14—C15	1.506 (3)	С32—Н32А	0.9700
C14—H14A	0.9700	С32—Н32В	0.9700
C14—H14B	0.9700	C33—C34	1.519 (3)
C15—C16	1.518 (3)	С33—Н33А	0.9700
C15—H15A	0.9700	С33—Н33В	0.9700
C15—H15B	0.9700	C34—C35	1.518 (3)
C16—C17	1.499 (3)	C34—H34A	0.9700
C16—H16A	0.9700	C34—H34B	0.9700
C16—H16B	0.9700	C35—C36	1.522 (3)

C17—C18	1.524 (3)	С35—Н35А	0.9700
C17—H17A	0.9700	С35—Н35В	0.9700
C17—H17B	0.9700	C36—C37	1.505 (3)
C18—C19	1.508 (3)	С36—Н36А	0.9700
C18—H18A	0.9700	С36—Н36В	0.9700
C18—H18B	0.9700	С37—С38	1.511 (4)
C19—C20	1.519 (3)	С37—Н37А	0.9700
С19—Н19А	0.9700	С37—Н37В	0.9700
С19—Н19В	0.9700	C38—H38A	0.9600
C20—C21	1.507 (3)	C38—H38B	0.9600
C20—H20A	0.9700	C38—H38C	0.9600
C5-01-C7	118.08 (16)	C22—C21—H21A	108.7
C4-02-C23	118 49 (15)	C20—C21—H21B	108.7
$C^2 - C^1 - C^6$	119.92 (19)	$C_{22} = C_{21} = H_{21B}$	108.7
C^2 — C^1 — Br^1	122 46 (16)	$H_{21}A = C_{21} = H_{21}B$	107.6
C6-C1-Br1	117.60(17)	C_{21} C_{22} H_{22A}	109.5
C_1 C_2 C_3	120.64(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C1 - C2 - C3	120.04(1)) 121.74(16)	$H_{22} = H_{22} = H$	109.5
$C_1 = C_2 = B_{12}$	121.74(10) 117.60(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_3 = C_2 = D_{12}$	117.00(17) 110.4(2)	H_{22} H	109.5
C4 = C3 = C2	119.4 (2)	$H_{22}A = C_{22} = H_{22}C$	109.5
C_{4} C_{2} C_{3} H_{2}	120.3	1122D - C22 - 1122C	109.5
$C_2 = C_3 = H_3$	120.3 122.08(10)	02 - 023 - 024	103.09 (10)
02-C4-C5	125.96 (19)	02-025-025	110.0
02C4C5	113.0/(1/) 120.24(10)	C24—C23—H23A	110.0
$C_3 = C_4 = C_3$	120.34(19)	02-025-025	110.0
01 - 05 - 04	124.90 (19)	C24—C23—H23B	110.0
01 - 05 - 04	115.26 (18)	H23A—C23—H23B	108.7
$C_{6} - C_{5} - C_{4}$	119.76 (19)	$C_{23} = C_{24} = C_{25}$	113.97 (17)
	119.89 (19)	C23—C24—H24A	108.8
С5—С6—Н6	120.1	C25—C24—H24A	108.8
CI	120.1	C23—C24—H24B	108.8
01	106.76 (17)	C25—C24—H24B	108.8
01—C7—H7A	110.4	H24A—C24—H24B	107.7
С8—С7—Н7А	110.4	C26—C25—C24	112.64 (17)
O1—C7—H7B	110.4	C26—C25—H25A	109.1
С8—С7—Н7В	110.4	C24—C25—H25A	109.1
H7A—C7—H7B	108.6	С26—С25—Н25В	109.1
C7—C8—C9	112.76 (18)	C24—C25—H25B	109.1
С7—С8—Н8А	109.0	H25A—C25—H25B	107.8
С9—С8—Н8А	109.0	C25—C26—C27	115.21 (17)
С7—С8—Н8В	109.0	C25—C26—H26A	108.5
С9—С8—Н8В	109.0	C27—C26—H26A	108.5
H8A—C8—H8B	107.8	C25—C26—H26B	108.5
C8—C9—C10	114.92 (17)	C27—C26—H26B	108.5
С8—С9—Н9А	108.5	H26A—C26—H26B	107.5
С10—С9—Н9А	108.5	C28—C27—C26	113.06 (18)
С8—С9—Н9В	108.5	С28—С27—Н27А	109.0
С10—С9—Н9В	108.5	С26—С27—Н27А	109.0

H9A—C9—H9B	107.5	C28—C27—H27B	109.0
C11—C10—C9	113.27 (16)	С26—С27—Н27В	109.0
C11—C10—H11A	108.9	H27A—C27—H27B	107.8
C9-C10-H11A	108.9	C_{27} C_{28} C_{29}	115.14 (18)
C11—C10—H11B	108.9	C27—C28—H28A	108.5
C9-C10-H11B	108.9	C29—C28—H28A	108.5
H11A-C10-H11B	107.7	C27—C28—H28B	108.5
C10-C11-C12	115 50 (18)	C29—C28—H28B	108.5
C10-C11-H10A	108.4	H28A—C28—H28B	107.5
C12— $C11$ — $H10A$	108.4	C_{28} C_{29} C_{30}	113 36 (18)
C10-C11-H10B	108.4	$C_{28} = C_{29} = H_{29A}$	108.9
C12— $C11$ — $H10B$	108.4	C_{30} C_{29} H_{29A}	108.9
H10A - C11 - H10B	107.5	C28-C29-H29B	108.9
C_{13} C_{12} C_{11}	113 76 (18)	$C_{20} = C_{20} = H_{20B}$	108.9
$C_{13} = C_{12} = C_{11}$	108.8	$H_{20A} = C_{20} = H_{20B}$	107.7
$C_{11} = C_{12} = H_{12A}$	108.8	1129A - C29 - 1129B	107.7
C12 C12 H12P	108.8	$C_{31} = C_{30} = C_{23}$	108 5
C11 C12 H12B	100.0	C_{20} C_{20} H_{20A}	108.5
$U_{12} = U_{12} = U_{12} = U_{12}$	108.8	$C_{29} = C_{30} = H_{30} R_{30}$	108.5
$\Pi I Z A - C I Z - \Pi I Z B$	107.7	С31—С30—Н30В	108.5
C12 - C13 - C14	115.21 (19)	C29—C30—H30B	108.5
C12—C13—H13A	108.5	H30A—C30—H30B	107.5
C14—C13—H13A	108.5	$C_{30} = C_{31} = C_{32}$	113.24 (19)
С12—С13—Н13В	108.5	C30—C31—H31A	108.9
С14—С13—Н13В	108.5	C32—C31—H31A	108.9
H13A—C13—H13B	107.5	C30—C31—H31B	108.9
C15—C14—C13	113.97 (19)	C32—C31—H31B	108.9
С15—С14—Н14А	108.8	H31A—C31—H31B	107.7
С13—С14—Н14А	108.8	C33—C32—C31	114.63 (19)
C15—C14—H14B	108.8	С33—С32—Н32А	108.6
C13—C14—H14B	108.8	C31—C32—H32A	108.6
H14A—C14—H14B	107.7	С33—С32—Н32В	108.6
C14—C15—C16	115.77 (19)	С31—С32—Н32В	108.6
C14—C15—H15A	108.3	H32A—C32—H32B	107.6
C16—C15—H15A	108.3	C32—C33—C34	113.54 (18)
C14—C15—H15B	108.3	С32—С33—Н33А	108.9
C16—C15—H15B	108.3	С34—С33—Н33А	108.9
H15A—C15—H15B	107.4	С32—С33—Н33В	108.9
C17—C16—C15	114.32 (19)	С34—С33—Н33В	108.9
C17—C16—H16A	108.7	H33A—C33—H33B	107.7
C15—C16—H16A	108.7	C35—C34—C33	114.82 (19)
C17—C16—H16B	108.7	С35—С34—Н34А	108.6
C15—C16—H16B	108.7	С33—С34—Н34А	108.6
H16A—C16—H16B	107.6	C35—C34—H34B	108.6
C16—C17—C18	115.2 (2)	C33—C34—H34B	108.6
С16—С17—Н17А	108.5	H34A—C34—H34B	107.5
C18—C17—H17A	108.5	C34—C35—C36	113.76 (19)
С16—С17—Н17В	108.5	С34—С35—Н35А	108.8
C18—C17—H17B	108.5	С36—С35—Н35А	108.8
H17A—C17—H17B	107.5	С34—С35—Н35В	108.8

C19—C18—C17	113.8 (2)	С36—С35—Н35В	108.8
C19—C18—H18A	108.8	H35A—C35—H35B	107.7
C17—C18—H18A	108.8	C37—C36—C35	114.6 (2)
C19—C18—H18B	108.8	С37—С36—Н36А	108.6
C17—C18—H18B	108.8	С35—С36—Н36А	108.6
H18A—C18—H18B	107.7	С37—С36—Н36В	108.6
C18—C19—C20	114.9 (2)	С35—С36—Н36В	108.6
C18—C19—H19A	108.5	H36A—C36—H36B	107.6
C20—C19—H19A	108.5	C36—C37—C38	113.0 (2)
C18—C19—H19B	108.5	С36—С37—Н37А	109.0
С20—С19—Н19В	108.5	С38—С37—Н37А	109.0
H19A—C19—H19B	107.5	С36—С37—Н37В	109.0
C21—C20—C19	114.5 (2)	С38—С37—Н37В	109.0
C21—C20—H20A	108.6	H37A—C37—H37B	107.8
C19—C20—H20A	108.6	С37—С38—Н38А	109.5
C21—C20—H20B	108.6	С37—С38—Н38В	109.5
C19—C20—H20B	108.6	H38A—C38—H38B	109.5
H20A—C20—H20B	107.6	C37—C38—H38C	109.5
C20—C21—C22	114.4 (2)	H38A—C38—H38C	109.5
C20—C21—H21A	108.7	H38B—C38—H38C	109.5
C6—C1—C2—C3	1.1 (3)	C10-C11-C12-C13	179.2 (2)
Br1—C1—C2—C3	179.52 (16)	C11—C12—C13—C14	-179.4 (2)
C6—C1—C2—Br2	-177.56 (16)	C12—C13—C14—C15	179.3 (2)
Br1—C1—C2—Br2	0.9 (3)	C13—C14—C15—C16	-179.8 (2)
C1—C2—C3—C4	-0.6 (3)	C14—C15—C16—C17	179.2 (2)
Br2—C2—C3—C4	178.09 (16)	C15—C16—C17—C18	179.9 (2)
C23—O2—C4—C3	17.4 (3)	C16—C17—C18—C19	179.6 (2)
C23—O2—C4—C5	-161.66 (19)	C17—C18—C19—C20	-179.8 (2)
C2—C3—C4—O2	179.9 (2)	C18—C19—C20—C21	-179.9 (2)
C2—C3—C4—C5	-1.0(3)	C19—C20—C21—C22	179.9 (3)
C7—O1—C5—C6	-15.4 (3)	C4—O2—C23—C24	174.14 (18)
C7—O1—C5—C4	163.21 (19)	O2—C23—C24—C25	-175.97 (19)
O2—C4—C5—O1	2.6 (3)	C23—C24—C25—C26	179.1 (2)
C3—C4—C5—O1	-176.50 (18)	C24—C25—C26—C27	-178.4 (2)
O2—C4—C5—C6	-178.69 (19)	C25—C26—C27—C28	179.4 (2)
C3—C4—C5—C6	2.2 (3)	C26—C27—C28—C29	-179.5 (2)
O1-C5-C6-C1	176.85 (19)	C27—C28—C29—C30	179.6 (2)
C4—C5—C6—C1	-1.7 (3)	C28—C29—C30—C31	-179.5 (2)
C2—C1—C6—C5	0.1 (3)	C29—C30—C31—C32	-179.7(2)
Br1-C1-C6-C5	-178.44 (16)	C30—C31—C32—C33	-179.2 (2)
C5—O1—C7—C8	-160.79 (18)	C31—C32—C33—C34	179.9 (2)
01	62.6 (3)	C32—C33—C34—C35	-179.8 (2)
C7—C8—C9—C10	174.3 (2)	C33—C34—C35—C36	-179.2(2)
C8—C9—C10—C11	176.9 (2)	C34—C35—C36—C37	-178.0(3)
C9—C10—C11—C12	-178.7 (2)	C35—C36—C37—C38	-177.4 (3)

C = X = (X = C)' interactions (Å, °) in (II) (X = halogen)	
The mean interaliphatic distance is 3.80Å.	

C—X···(X—C)'	X…X′	(C—X)···X′	X…(X—C)′	Interaction type
C1— $Br1$ ···($Br1$ - $C1$) ⁱ	3.7722 (15)	118.6 (2)	118.6 (2)	Ι
C1— $Br1$ ···($Br2$ - $C2$) ⁱ	3.6437 (10)	171.5 (2)	122.1 (2)	Π
C1—Br1···(Br2-C2) ⁱⁱ	3.8704 (11)	73.0 (2)	91.0 (2)	Ι

Symmetry codes: (i) -x + 1/2, -y + 1/2, -z + 1; (ii) x, y - 1, z.

$C - X - \pi$ interactions (Å, °) in (III) (X = halogen)

Cg1 is the centre of the C1–C6 ring. The mean interaliphatic distance is 3.90 Å.

C—X···Cg	С…Х	X…Cg	C…Cg	C—X···Cg
C2—Br2···Cg1 ⁱ	1.893	3.976 (3)	4.941	109.1

Symmetry code: (i) x, -y + 1, z - 1/2.