59 research outputs found
Large mammalian herbivores and the paradox of soil carbon in grazing ecosystems: Role of microbial decomposers and their enzymes
Grazing is the dominant land use across the world, and large mammalian herbivores exert strong influence over biogeochemical cycles. Grazing ecosystems feature C-rich soils, even though herbivores consume a major fraction of plant production to reduce detrital input to soil. Yet, counter-intuitively, moderate grazing can promote net soil-C storage in many ecosystems compared to grazer-exclusion. We address this enigmatic influence of grazers on soil-C and test their indirect effect on proximate drivers of decomposition: microbial extracellular enzyme activity. We used a replicated long-term grazer-exclusion experiment to measure responses in above- and belowground plant biomass, soil-C stock, microbial biomass, labile/recalcitrant C pools and three enzymes relevant to the C-cycle: peroxidase—which initiates decomposition of recalcitrant matter, alongside beta-glucosidase and cellobiohydrolase—which act further downstream on more labile fractions. Consistent with other ecosystems, upto 12 years of herbivore exclusion did not increase soil-C in the fenced plots despite higher plant biomass and higher potential detrital C-inputs. Grazer-exclusion did not alter microbial biomass; peroxidase increased threefold and beta-glucosidase was doubled; cellobiohydrolase was unaffected. Grazer-exclusion also led to twofold increase in recalcitrant-C and in microbial respiration, but it did not influence labile-C. Structural equation models supported the hypothesis that grazing favours soil-C via its indirect effect on peroxidase, but they did not support that the effects can run in the opposite direction where soil-C affects enzymes. Grazer-mediated shifts in how microbes deploy enzymes emerge as a plausible mechanism that affects soil-C. These linkages may be important to maintain soil-C sequestration in drylands which support large mammalian herbivores
Consequences of migratory coupling of predators and prey when mediated by human actions
Aim Animal migrations influence ecosystem structure, dynamics and persistence of predator and prey populations. The theory of migratory coupling postulates that aggregations of migrant prey can induce large-scale synchronized movements in predators, and this coupling is consequential for the dynamics of ecological communities. The degree to which humans influence these interactions remains largely unknown. We tested whether creation of large resource pulses by humans such as seasonal herding of reindeer Rangifer tarandus and hunting of moose, Alces alces, can induce migratory coupling with Golden Eagles, Aquila chrysaetos, and whether these lead to demographic consequences for the eagles. Location Fennoscandia. Methods We used movement data from 32 tracked Golden Eagles spanning 125 annual migratory cycles over 8 years. We obtained reindeer distribution data through collaboration with reindeer herders based on satellite tracking of reindeer, and moose harvest data from the national hunting statistics for Sweden. We assessed demographic consequences for eagles from ingesting lead from ammunition fragments in moose carcasses through survival estimates and their links with lead concentrations in eagles' blood. Results In spring, eagles migrated hundreds of kilometres to be spatially and temporally coupled with calving reindeer, whereas in autumn, eagles matched their distribution with the location and timing of moose hunt. Juveniles were more likely to couple with reindeer calving, whereas adults were particularly drawn to areas of higher moose harvest. Due to this coupling, eagles ingested lead from spent ammunition in moose offal and carcasses and the resulting lead toxicity increased the risk of mortality by 3.4 times. Main conclusions We show how migratory coupling connects landscape processes and that human actions can influence migratory coupling over large spatial scales and increase demographic risks for predators. We provide vital knowledge towards resolving human-wildlife conflicts and the conservation of protected species over a large spatial and temporal scale
Loss of grazing by large mammalian herbivores can destabilize the soil carbon pool
Grazing by mammalian herbivores can be a climate mitigation strategy as it influences the size and stability of a large soil carbon (soil-C) pool (more than 500 Pg C in the world’s grasslands, steppes, and savannas). With continuing declines in the numbers of large mammalian herbivores, the resultant loss in grazer functions can be consequential for this soil-C pool and ultimately for the global carbon cycle. While herbivore effects on the size of the soil-C pool and the conditions under which they lead to gain or loss in soil-C are becoming increasingly clear, their effect on the equally important aspect of stability of soil-C remains unknown. We used a replicated long-term field experiment in the Trans-Himalayan grazing ecosystem to evaluate the consequences of herbivore exclusion on interannual fluctuations in soil-C (2006 to 2021). Interannual fluctuations in soil-C and soil-N were 30 to 40% higher after herbivore exclusion than under grazing. Structural equation modeling suggested that grazing appears to mediate the stabilizing versus destabilizing influences of nitrogen (N) on soil-C. This may explain why N addition stimulates soil-C loss in the absence of herbivores around the world. Herbivore loss, and the consequent decline in grazer functions, can therefore undermine the stability of soil-C. Soil-C is not inert but a very dynamic pool. It can provide nature-based climate solutions by conserving and restoring a functional role of large mammalian herbivores that extends to the stoichiometric coupling between soil-C and soil-N
The positive effect of plant diversity on soil carbon depends on climate
Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of
organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.EEA Santa CruzFil: Spohn, Marie. Swedish University of Agricultural Sciences (SLU). Department of Soil and Environment; SueciaFil: Bagchi, Sumanta. Indian Institute of Science; India.Fil: Biederman, Lori A. Iowa State University. Department of Ecology, Evolution, and Organismal Biology; Estados UnidosFil: Borer, Elizabeth T. University of Minnesota. Department of Ecology, Evolution, and Behavior; Estados UnidosFil: Bråthen, Kari Anne. Arctic University of Norway. Department of Arctic and Marine Biology; NoruegaFil: Bugalho, Miguel N. University of Lisbon. Centre for Applied Ecology “Prof. Baeta Neves” (CEABN-InBIO). School of Agriculture; Portugal.Fil: Caldeira, Maria C. University of Lisbon. Forest Research Centre. Associate Laboratory TERRA. School of Agriculture; Portugal.Fil: Catford, Jane A. King’s College London. Department of Geography; Reino UnidoFil: Catford, Jane A. University of Melbourne. School of Agriculture, Food and Ecosystem Sciences; Australia.Fil: Collins, Scott L. University of New Mexico. Department of Biology; Estados UnidosFil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research (iDiv). Halle-Jena-Leipzig; AlemaniaFil: Eisenhauer, Nico. Leipzig University. Institute of Biology; AlemaniaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Yahdjian, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA); Argentina.Fil: Yahdjian, Laura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina
Nutrient Availability Controls the Impact of Mammalian Herbivores on Soil Carbon and Nitrogen Pools in Grasslands
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change
The positive effect of plant diversity on soil carbon depends on climate
Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates
Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass
Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.Fil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Chaneton, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Iribarne, Oscar Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Bruschetti, Carlos Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: MacDougall, Andrew S.. University Of Guelph. Department Of Integrative Biology.; CanadáFil: Pascual, Jesus Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Sankaran, Mahesh. University of Leeds; Reino Unido. Tata Institute of Fundamental Research; IndiaFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Wang, Shaopeng. Peking University; ChinaFil: Bagchi, Sumanta. Indian Institute of Science; IndiaFil: Brudvig, Lars A.. Michigan State University; Estados UnidosFil: Catford, Jane A.. University of Melbourne; Australia. Kings College London (kcl);Fil: Dickman, Chris R.. The University Of Sydney; AustraliaFil: Dickson, Tymothy L.. University of Nebraska; Estados UnidosFil: Donohue, Ian. Trinity College Dublin; Reino UnidoFil: Eisenhauer, Nico. Universitat Leipzig; Alemania. German Centre for Integrative Biodiversity Research; AlemaniaFil: Gruner, Daniel S.. University of Maryland; Estados UnidosFil: Haider, Sylvia. German Centre for Integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; Alemania. Leuphana University of Lüneburg; AlemaniaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Knops, Johannes M. H.. Xi’an Jiaotong-Liverpool University; ChinaFil: Lekberg, Ylva. University of Montana; Estados UnidosFil: McCulley, Rebecca L.. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. University of Melbourne; Australia. Monash University; Australia. Arthur Rylah Institute for Environmental Research; AustraliaFil: Mortensen, Brent. Benedictine College; Estados UnidosFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina. Universidad Nacional de la Patagonia Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rocca, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin
A dominant dwarf shrub increases diversity of herbaceous plant communities in a Trans-Himalayan rangeland
Plant communities are structured by both competition and facilitation. The interplay between the two interactions can vary depending on environmental factors, nature of stress, and plant traits. But, whether positive or negative interactions dominate in regions of high biotic and abiotic stress remains unclear.We studied herbaceous plant communities associated with a dwarf shrub Caragana versicolor in semi-arid, high altitude Trans Himalayan rangelands of Spiti, India. We surveyed 120 pairs of plots (within and outside shrub canopies) across four watersheds differing in altitude, aspect and dominant herbivores. Herbaceous communities within shrub canopies had 25% higher species richness, but similar abundance when compared to communities outside the canopy, with the shrub edge having higher diversity than the center of the canopy. Grasses and erect forbs showed positive associations with the shrub, while prostrate plants occurred at much lower abundance within the canopy. Rare species showed stronger positive associations with Caragana than abundant species. Experimental removal of herbaceous vegetation from within shrub canopies led to 42% increase in flowering in Caragana, indicating a cost to the host shrubs. Our study indicates a robust pattern of a dwarf shrub facilitating local community diversity across this alpine landscape, increasing diversity at the plot level, facilitating rare species, and yet incurring a cost to hosts from the presence of herbaceous plants. Given these large influences of this shrub on vegetation of these high altitude rangelands, we suggest that the shrub microhabitat be explicitly considered in any analyses of ecosystem health in such rangelands
Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands
Grasslands are subject to considerable alteration due to human activities globally,
including widespread changes in populations and composition of large mammalian
herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and
these changes likely interact with increases in soil nutrient availability. Given the scale
of grassland soil fluxes, such changes can have striking consequences for atmospheric
C concentrations and the climate. Here, we use the Nutrient Network experiment
to examine the responses of soil C and N pools to mammalian herbivore exclusion
across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized
with NPK + micronutrients). We show that the impact of herbivore exclusion on soil
C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are
smaller upon herbivore exclusion. The highest mean soil C and N pools were found in
grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in
combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion
was contingent on temperature – herbivores likely cause losses of C and N in colder
sites and increases in warmer sites. Additionally, grasslands that contain mammalian
herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the
importance of conserving mammalian herbivore populations in grasslands worldwide.
We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land–atmosphere
interactions under future climate change.National Science Foundation Research Coordination Network,
Long Term Ecological Research,
Institute on the Environment,
Strategic Resources of the Netherlands Institute of Ecology,
Research Foundation Flanders,
VENI grant,
NWO-RUBICON grant,
NWO-VENI grant,
German Centre for Integrative Biodiversity Research,
German Research Foundation (FZT 118).http://wileyonlinelibrary.com/journal/gcbpm2021Mammal Research InstituteZoology and Entomolog
- …