2,323 research outputs found
Unveiling the Circumstellar Envelope and Disk: A Sub-Arcsecond Survey of Circumstellar Structures
We present the results of a 2.7 mm continuum interferometric survey of 24
young stellar objects in 11 fields. The target objects range from deeply
embedded Class 0 sources to optical T Tauri sources. This is the first
sub-arcsecond survey of the 2.7 mm dust continuum emission from young, embedded
stellar systems. The images show a diversity of structure and complexity. The
optically visible T Tauri stars (DG Tauri, HL Tauri, GG Tauri,and GM Aurigae)
have continuum emission dominated by compact, less than 1", circumstellar
disks. The more embedded near-infrared sources (SVS13 and L1551 IRS5) have
continuum emission that is extended and compact. The embedded sources (L1448
IRS3, NGC1333 IRAS2, NGC1333 IRAS4, VLA1623, and IRAS 16293-2422) have
continuum emission dominated by the extended envelope, typically more than 85%.
In fact, in many of the deeply embedded systems it is difficult to uniquely
isolate the disk emission component from the envelope extending inward to AU
size scales. All of the target embedded objects are in multiple systems with
separations on scales of 30" or less. Based on the system separation, we place
the objects into three categories: separate envelope (separation > 6500 AU),
common envelope (separation 150-3000 AU), and common disk (separation < 100
AU). These three groups can be linked with fragmentation events during the star
formation process: separate envelopes from prompt initial fragmentation and the
separate collapse of a loosely condensed cloud, common envelopes from
fragmentation of a moderately centrally condensed spherical system, and common
disk from fragmentation of a high angular momentum circumstellar disk.Comment: 47 Pages, 18 Figures, ApJ accepte
Diagnosing shock temperature with NH and HO profiles
In a previous study of the L1157 B1 shocked cavity, a comparison between
NH(1-) and HO(1--1) transitions showed a
striking difference in the profiles, with HO emitting at definitely higher
velocities. This behaviour was explained as a result of the high-temperature
gas-phase chemistry occurring in the postshock gas in the B1 cavity of this
outflow. If the differences in behaviour between ammonia and water are indeed a
consequence of the high gas temperatures reached during the passage of a shock,
then one should find such differences to be ubiquitous among chemically rich
outflows. In order to determine whether the difference in profiles observed
between NH and HO is unique to L1157 or a common characteristic of
chemically rich outflows, we have performed Herschel-HIFI observations of the
NH(1-0) line at 572.5 GHz in a sample of 8 bright low-mass outflow
spots already observed in the HO(1--1) line within
the WISH KP. We detected the ammonia emission at high-velocities at most of the
outflows positions. In all cases, the water emission reaches higher velocities
than NH, proving that this behaviour is not exclusive of the L1157-B1
position. Comparisons with a gas-grain chemical and shock model confirms, for
this larger sample, that the behaviour of ammonia is determined principally by
the temperature of the gas.Comment: Accepted for publication in the Monthly Notices of the Royal
Astronomical Societ
The detection of Class I methanol masers towards regions of low-mass star formation
Six young bipolar outflows in regions of low-to-intermediate-mass star
formation were observed in the 7_0-6_1A+, 8_0-7_1A+, and 5_{-1}-4_0E methanol
lines at 44, 95, and 84 GHz, respectively. Narrow features were detected
towards NGC 1333IRAS4A, HH 25MMS, and L1157 B1. Flux densities of the detected
lines are no higher than 11 Jy, which is much lower than the flux densities of
strong maser lines in regions of high-mass star formation. Analysis shows that
most likely the narrow features are masers.Comment: 12 pages, 6 figures, to be published in Astronomy Report
The B1 shock in the L1157 outflow as seen at high spatial resolution
We present high spatial resolution (750 AU at 250 pc) maps of the B1 shock in
the blue lobe of the L1157 outflow in four lines: CS (3-2), CH3OH (3_K-2_K),
HC3N (16-15) and p-H2CO (2_02-3_01). The combined analysis of the morphology
and spectral profiles has shown that the highest velocity gas is confined in a
few compact (~ 5 arcsec) bullets while the lowest velocity gas traces the wall
of the gas cavity excavated by the shock expansion. A large velocity gradient
model applied to the CS (3-2) and (2-1) lines provides an upper limit of 10^6
cm^-3 to the averaged gas density in B1 and a range of 5x10^3< n(H2)< 5x10^5
cm^-3 for the density of the high velocity bullets. The origin of the bullets
is still uncertain: they could be the result of local instabilities produced by
the interaction of the jet with the ambient medium or could be clump already
present in the ambient medium that are excited and accelerated by the expanding
outflow. The column densities of the observed species can be reproduced
qualitatively by the presence in B1 of a C-type shock and only models where the
gas reaches temperatures of at least 4000 K can reproduce the observed HC3N
column density.Comment: 13 pages, 12 figure
CN and HCN in Dense Interstellar Clouds
We present a theoretical investigation of CN and HCN molecule formation in
dense interstellar clouds. We study the gas-phase CN and HCN production
efficiencies from the outer photon-dominated regions (PDRs) into the opaque
cosmic-ray dominated cores. We calculate the equilibrium densities of CN and
HCN, and of the associated species C+, C, and CO, as functions of the
far-ultraviolet (FUV) optical depth. We consider isothermal gas at 50 K, with
hydrogen particle densities from 10^2 to 10^6 cm^-3. We study clouds that are
exposed to FUV fields with intensities 20 to 2*10^5 times the mean interstellar
FUV intensity. We assume cosmic-ray H2 ionization rates ranging from 5*10^-17
s^-1, to an enhanced value of 5*10^-16 s^-1. We also examine the sensitivity of
the density profiles to the gas-phase sulfur abundance.Comment: Accepted for publication in ApJ, 33 pages, 8 figure
33.8 GHz CCS Survey of Molecular Cores in Dark Clouds
We have conducted a survey of the CCS line toward 11 dark
clouds and star-forming regions at 30 arcsec spatial resolution and 0.054 km/s
velocity resolution. CCS was only detected in quiescent clouds, not in active
star-forming regions. The CCS distribution shows remarkable clumpy structure,
and 25 clumps are identified in 7 clouds. Seven clumps with extremely narrow
nonthermal linewidths < 0.1 km/s are among the most quiescent clumps ever
found. The CCS clumps tend to exist around the higher density regions traced by
NH_3 emission or submillimeter continuum sources, and the distribution is not
spherically symmetric. Variation of the CCS abundance was suggested as an
indicator of the evolutionary status of star formation. However, we can only
find a weak correlation between N(CCS) and . The velocity
distributions of CCS clouds reveal that a systematic velocity pattern generally
exists. The most striking feature in our data is a ring structure in the
position-velocity diagram of L1544 with an well-resolved inner hole of 0.04 pc
x 0.13 km/s and an outer boundary of 0.16 pc x 0.55 km/s. This
position-velocity structure clearly indicates an edge-on disk or ring geometry,
and it can be interpreted as a collapsing disk with an infall velocity
0.1 km/s and a rotational velocity less than our velocity resolution.
Nonthermal linewidth distribution is generally coherent in CCS clouds, which
could be evidence for the termination of Larson's Law at small scales,
0.1 pc.Comment: 21 pages, 25 ostscript figures, accepted for publication in the
Supplement Series of the Astrophysical Journal (May 2000
X-ray and Near-infrared Studies of a Star-forming Cloud; L1448
We present the results of X-ray and near-infrared (NIR) observations of
L1448, a star-forming region in the Perseus cloud complex using the Chandra
X-ray Observatory and the 4 m telescope at the Kitt Peak National Observatory.
We detect 72 X-ray sources in a ~17 arcmin x 17 arcmin region with a ~68 ks
ACIS exposure, for which we conduct follow-up NIR imaging observations in a
concentric ~11 arcmin x 11 arcmin region with FLAMINGOS down to m_Ks ~ 17 mag.
Twelve X-ray sources have NIR or optical counterparts. By plotting X-ray mean
energy versus NIR to X-ray flux ratio, the X-ray sources are clearly separated
into two groups. The X-ray spectral and temporal features as well as NIR
magnitudes and colors indicate that one group mainly consists of young stellar
objects (YSOs) in the cloud and the other of background extragalactic sources.
Ten X-ray-emitting YSO candidates are thus newly identified, which are low-mass
or brown dwarf mass sources from their NIR magnitudes. In addition, a possible
X-ray signal is found from a mid-infrared protostar L1448 IRS 3(A). The lack of
detection of this source in our deep NIR images indicates that this source has
a very steep spectral slope of > 3.2 in 2--10 micron.Comment: 13 pages, 7 postscript figures, accepted for publication in A
Cold gas as an ice diagnostic toward low mass protostars
Up to 90% of the chemical reactions during star formation occurs on ice
surfaces, probably including the formation of complex organics. Only the most
abundant ice species are however observed directly by infrared spectroscopy.
This study aims to develop an indirect observational method of ices based on
non-thermal ice desorption in the colder part of protostellar envelopes. For
that purpose the IRAM 30m telescope was employed to observe two molecules that
can be detected both in the gas and the ice, CH3 OH and HNCO, toward 4 low mass
embedded protostars. Their respective gas-phase column densities are determined
using rotational diagrams. The relationship between ice and gas phase
abundances is subsequently determined. The observed gas and ice abundances span
several orders of magnitude. Most of the CH3OH and HNCO gas along the lines of
sight is inferred to be quiescent from the measured line widths and the derived
excitation temperatures, and hence not affected by thermal desorption close to
the protostar or in outflow shocks. The measured gas to ice ratio of ~10-4
agrees well with model predictions for non-thermal desorption under cold
envelope conditions and there is a tentative correlation between ice and gas
phase abundances. This indicates that non-thermal desorption products can serve
as a signature of the ice composition. A larger sample is however necessary to
provide a conclusive proof of concept.Comment: accepted by A&A letters, 10 pages including 5 figure
Deuterated Ammonia in Galactic Protostellar Cores
We report on a survey of \nh2d towards protostellar cores in low-mass star
formation and quiescent regions in the Galaxy. Twenty-three out of thirty-two
observed sources have significant (\gsim 5\sigma) \nh2d emission.
Ion-molecule chemistry, which preferentially enhances deuterium in molecules
above its cosmological value of \scnot{1.6}{-5} sufficiently explains these
abundances. NH2D/NH3 ratios towards Class 0 sources yields information about
the ``fossil remnants'' from the era prior to the onset of core collapse and
star formation. We compare our observations with predictions of gas-phase
chemical networks.Comment: 16 Pages, 7 Figures, Accepted to Ap.J., to appear in the June 20,
2001 editio
- âŠ