470 research outputs found

    On the Statistical Properties of Cospectra

    Get PDF
    In recent years, the cross-spectrum has received considerable attention as a means of characterizing the variability of astronomical sources as a function of wavelength. The cospectrum has only recently been understood as a means of mitigating instrumental effects dependent on temporal frequency in astronomical detectors, as well as a method of characterizing the coherent variability in two wavelength ranges on different timescales. In this paper, we lay out the statistical foundations of the cospectrum, starting with the simplest case of detecting a periodic signal in the presence of white noise, under the assumption that the same source is observed simultaneously in independent detectors in the same energy range. This case is especially relevant for detecting faint X-ray pulsars in detectors heavily affected by instrumental effects, including NuSTAR, Astrosat, and IXPE, which allow for even sampling and where the cospectrum can act as an effective way to mitigate dead time. We show that the statistical distributions of both single and averaged cospectra differ considerably from those for standard periodograms. While a single cospectrum follows a Laplace distribution exactly, averaged cospectra are approximated by a Gaussian distribution only for more than ~30 averaged segments, dependent on the number of trials. We provide an instructive example of a quasi-periodic oscillation in NuSTAR and show that applying standard periodogram statistics leads to underestimated tail probabilities for period detection. We also demonstrate the application of these distributions to a NuSTAR observation of the X-ray pulsar Hercules X-1

    Evidence for a Variable Ultrafast Outflow in the Newly Discovered Ultraluminous Pulsar NGC 300 ULX-1

    Get PDF
    Ultraluminous pulsars are a definite proof that persistent super-Eddington accretion occurs in nature. They support the scenario according to which most Ultraluminous X-ray Sources (ULXs) are super-Eddington accretors of stellar mass rather than sub-Eddington intermediate mass black holes. An important prediction of theories of supercritical accretion is the existence of powerful outflows of moderately ionized gas at mildly relativistic speeds. In practice, the spectral resolution of X-ray gratings such as RGS onboard XMM-Newton is required to resolve their observational signatures in ULXs. Using RGS, outflows have been discovered in the spectra of 3 ULXs (none of which are currently known to be pulsars). Most recently, the fourth ultraluminous pulsar was discovered in NGC 300. Here we report detection of an ultrafast outflow (UFO) in the X-ray spectrum of the object, with a significance of more than 3{\sigma}, during one of the two simultaneous observations of the source by XMM-Newton and NuSTAR in December 2016. The outflow has a projected velocity of 65000 km/s (0.22c) and a high ionisation factor with a log value of 3.9. This is the first direct evidence for a UFO in a neutron star ULX and also the first time that this its evidence in a ULX spectrum is seen in both soft and hard X-ray data simultaneously. We find no evidence of the UFO during the other observation of the object, which could be explained by either clumpy nature of the absorber or a slight change in our viewing angle of the accretion flow.Comment: 10 pages, 4 figures. Accepted to MNRA

    Spectral Changes in the Hyperluminous Pulsar in NGC 5907 as a Function of Super-Orbital Phase

    Get PDF
    We present broad-band, multi-epoch X-ray spectroscopy of the pulsating ultra-luminous X-ray source (ULX) in NGC 5907. Simultaneous XMM-Newton and NuSTAR data from 2014 are best described by a multi-color black-body model with a temperature gradient as a function of accretion disk radius significantly flatter than expected for a standard thin accretion disk (T(r) ~ r^{-p}, with p=0.608^{+0.014}_{-0.012}). Additionally, we detect a hard power-law tail at energies above 10 keV, which we interpret as being due to Comptonization. We compare this observation to archival XMM-Newton, Chandra, and NuSTAR data from 2003, 2012, and 2013, and investigate possible spectral changes as a function of phase over the 78d super-orbital period of this source. We find that observations taken around phases 0.3-0.4 show very similar temperature profiles, even though the observed flux varies significantly, while one observation taken around phase 0 has a significantly steeper profile. We discuss these findings in light of the recent discovery that the compact object is a neutron star and show that precession of the accretion disk or the neutron star can self-consistently explain most observed phenomena.Comment: 7 pages, 5 figures, submitted to ApJ; comments welcom

    MHD Simulations of Magnetospheric Accretion, Ejection and Plasma-field Interaction

    Full text link
    We review recent axisymmetric and three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.Comment: 11 pages, 8 figures, conference proceedings: "Physics at the Magnetospheric Boundary", Geneva, Switzerland, 25-28 June, 201

    An XMM-Newton and NuSTAR study of IGR J18214-1318: a non-pulsating high-mass X-ray binary with a neutron star

    Get PDF
    IGR J18214-1318, a Galactic source discovered by the International Gamma-Ray Astrophysics Laboratory, is a high-mass X-ray binary (HMXB) with a supergiant O-type stellar donor. We report on the XMM-Newton and NuSTAR observations that were undertaken to determine the nature of the compact object in this system. This source exhibits high levels of aperiodic variability, but no periodic pulsations are detected with a 90% confidence upper limit of 2% fractional rms between 0.00003-88 Hz, a frequency range that includes the typical pulse periods of neutron stars (NSs) in HMXBs (0.1-103^3 s). Although the lack of pulsations prevents us from definitively identifying the compact object in IGR J18214-1318, the presence of an exponential cutoff with e-folding energy 30\lesssim30 keV in its 0.3-79 keV spectrum strongly suggests that the compact object is an NS. The X-ray spectrum also shows a Fe Kα\alpha emission line and a soft excess, which can be accounted for by either a partial-covering absorber with NH1023N_{\mathrm{H}}\approx10^{23} cm2^{-2} which could be due to the inhomogeneous supergiant wind, or a blackbody component with kT=1.740.05+0.04kT=1.74^{+0.04}_{-0.05} keV and RBB0.3R_{BB}\approx0.3 km, which may originate from NS hot spots. Although neither explanation for the soft excess can be excluded, the former is more consistent with the properties observed in other supergiant HMXBs. We compare IGR J18214-1318 to other HMXBs that lack pulsations or have long pulsation periods beyond the range covered by our observations.Comment: 15 pages, 12 figures, 4 table

    Extending the Zn2Z^2_n and HH statistics to generic pulsed profiles

    Get PDF
    The search for astronomical pulsed signals within noisy data, in the radio band, is usually performed through an initial Fourier analysis to find "candidate" frequencies and then refined through the folding of the time series using trial frequencies close to the candidate. In order to establish the significance of the pulsed profiles found at these trial frequencies, pulsed profiles are evaluated with a chi-squared test, to establish how much they depart from a null hypothesis where the signal is consistent with a flat distribution of noisy measurements. In high-energy astronomy, the chi-squared statistic has widely been replaced by the Zn2Z^2_n statistic and the H-test as they are more sensitive to extra information such as the harmonic content of the pulsed profile. The Zn2Z^2_n statistic and H-test were originally developed for the use with "event data", composed of arrival times of single photons, leaving it unclear how these methods could be used in radio astronomy. In this paper, we present a version of the Zn2Z^2_n statistic and H-test for pulse profiles with Gaussian uncertainties, appropriate for radio or even optical pulse profiles. We show how these statistical indicators provide better sensitivity to low-significance pulsar candidates with respect to the usual chi-squared method, and a straightforward way to discriminate between pulse profile shapes. Moreover, they provide an additional tool for Radio Frequency Interference (RFI) rejection.Comment: 15 pages, 5 figure

    Detection of Very Low-Frequency Quasi-Periodic Oscillations in the 2015 Outburst of V404 Cygni

    Get PDF
    In June 2015, the black hole X-ray binary (BHXRB) V404 Cygni went into outburst for the first time since 1989. Here, we present a comprehensive search for quasi-periodic oscillations (QPOs) of V404 Cygni during its recent outburst, utilizing data from six instruments on board five different X-ray missions: Swift/XRT, Fermi/GBM, Chandra/ACIS, INTEGRAL's IBIS/ISGRI and JEM-X, and NuSTAR. We report the detection of a QPO at 18 mHz simultaneously with both Fermi/GBM and Swift/XRT, another example of a rare but slowly growing new class of mHz-QPOs in BHXRBs linked to sources with a high orbital inclination. Additionally, we find a duo of QPOs in a Chandra/ACIS observation at 73 mHz and 1.03 Hz, as well as a QPO at 136 mHz in a single Swift/XRT observation that can be interpreted as standard Type-C QPOs. Aside from the detected QPOs, there is significant structure in the broadband power, with a strong feature observable in the Chandra observations between 0.1 and 1 Hz. We discuss our results in the context of current models for QPO formation.Comment: 17 pages, 9 figures, published in Ap
    corecore