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ABSTRACT
The search for astronomical pulsed signals within noisy data, in the radio band, is usually performed

through an initial Fourier analysis to find “candidate” frequencies and then refined through the folding
of the time series using trial frequencies close to the candidate. In order to establish the significance
of the pulsed profiles found at these trial frequencies, pulsed profiles are evaluated with a chi-squared
test, to establish how much they depart from a null hypothesis where the signal is consistent with a
flat distribution of noisy measurements. In high-energy astronomy, the chi-squared statistic has widely
been replaced by the Z2

n statistic and the H-test as they are more sensitive to extra information such as
the harmonic content of the pulsed profile. The Z2

n statistic and H-test were originally developed for
the use with “event data”, composed of arrival times of single photons, leaving it unclear how these
methods could be used in radio astronomy. In this paper, we present a version of the Z2

n statistic and
H-test for pulse profiles with Gaussian uncertainties, appropriate for radio or even optical pulse profiles.
We show how these statistical indicators provide better sensitivity to low-significance pulsar candidates
with respect to the usual chi-squared method, and a straightforward way to discriminate between
pulse profile shapes. Moreover, they provide an additional tool for Radio Frequency Interference (RFI)
rejection.

Keywords: statistics – pulsars

1. INTRODUCTION

In a typical pulsar search, the uncertainty in the flux
measurements from a radio telescope are dominated by
various sources of noise, both from the sky and the in-
struments. The pulsar signal can be millions of times
weaker than the intrinsic noise of the time series. There-
fore, pulsar searches employ Fourier analysis to search for
periodicities. This search produces a growing number of
candidate pulsations (mainly due to the ever increasing
interfering signals from Earth or satellites). The selec-
tion of the most promising astrophysical signals amongst
them is based on a small number of statistical indicators.
Once a candidate pulsar frequency is found, the analysis
of candidates typically starts from epoch Folding (EF;
Leahy et al. 1983a).

Let (tj , Xj)∀ j = 1, . . . , N be pairs of flux measure-
ments Xj at times tj . If we define f as the candidate
pulse frequency and ḟ , f̈ , ... the frequency derivatives
measured at a reference time tref , we calculate the pulse
phase of each Xj as

φj(t) = φ0 + f(tj − tref) + 0.5ḟ(tj − tref)2 + ... (1)

where φ0 is the pulse phase at tref , which is set to 0
for unknown or candidate pulsars. Given the periodicity
involved, one is typically only interested in the fractional
part of this phase, distributed between 0 and 1. Since
this quantity will always be multiplied by a 2π factor
in the formulae below, we will follow the convention of
including 2π in φ for consistency: hereafter, φ will always
mean an angle between 0 and 2π. The folded or pulsed
profile is then a histogram of these phases falling into
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Nbin equal phase bins between 0 and 2π, weighted by
the flux in each sample1:

pi =

N∑
j=1

Xjθ (φj − φmid,i) (i = 1, . . . , Nbin) (2)

where

φmid,i = 2π
i− 0.5

Nbin

is the phase corresponding to the middle of bin i and

θ(x) =

1 if |x| < 0.5/Nbin

0 otherwise
(3)

Given a pulsed profile pi, consisting of Nbin equally
spaced bins, the most common statistical indicator is the
Epoch Folding chi-squared statistic (Leahy et al. 1983b;
Leahy 1987)

S =

Nbin∑
i=1

(
pi − p̄
σi

)2

(4)

where p̄ is the average profile, and σi is the standard
deviation in each profile bin. In the typical case, the
uncertainties σi are derived from the statistical uncer-
tainties of the individual flux measurements Xj . We
assume they are distributed according to the Poisson or
normal distribution, that the central limit theorem holds
and, therefore, that the phase-folded flux measurements
pi are distributed normally. Also, when comparing the
pulse profile obtained folding at different periods, one
usually assumes that the σi are all equal and obtained
by error propagation from the standard deviation of the
Xj :

σi ≡ σ = std(Xj)

√(
Nsamples

Nbin

)
(5)

If the normality assumption holds, the quantity S fol-
lows a χ2

Nbin−1 distribution if the time series is composed
of pure noise, and that makes it easy to evaluate the
probability of rejecting the null hypothesis. Another
quick statistical indicator, also used in searches of non-
periodic impulsive phenomena in the time domain (i.e.

1 Whereas this is the most common way to fold radio data, some
software packages like PRESTO use a slightly different approach:
they assume that each sample is finite in duration and "drizzle"
it over the appropriate pulse phase bins. This slightly different
approach does not substantively affect the results of this paper,
but see Appendix E for more details.

Fast Radio Bursts and single pulses), is the simple signal
to noise ratio (SNR):

SNR =
max(pi)− p̄

σ
(6)

where σ is the standard deviation or the median absolute
deviation of the profile, and the mean can be substituted
by the median depending on the implementation.
In the X-ray and γ-ray bands astronomers have devel-

oped other statistical indicators that are more sensitive
–better at finding low-amplitude signals– than S, pro-
vided that the signal is composed of single “events” and
the pulsed component can be described as the sum of a
relatively small number of sinusoidal harmonics. More-
over, while S and SNR only measure any deviation of
the pulsed profile from a flat distribution, these new sta-
tistical indicators also provide the ability to discriminate
between different pulse shapes, as we will discuss below.
Let us assume that we are observing a γ-ray or X-ray

pulsar we already know. We know its ephemeris (i.e.,
how its rotation evolves over time), usually expressed as
an initial phase φ0 and series of frequency derivatives
(f, ḟ , f̈ , ...) measured at a reference time tref . Starting
from a list of “events” corresponding to time stamps tj of
photons hitting a detector, one can calculate the phase
of each photon φj as in Eq. 1. The pulsed profile in this
case can be obtained as a histogram of the fractional
part of these phases. pi is now the number of events
counted in the phase bin i. Eq. 4 in this case becomes

Sbin =

Nbin∑
i=1

(pi − λ)
2

λ
(7)

where λ is the average of the pulsed profile (the equivalent
of p̄ in Equation 4), and we used the fact that in a
counting experiment the variance in each bin is equal to
the Poisson rate.
Buccheri et al. (1983) introduced an alternative statis-

tic, now-standard in X- and γ-rays, called Z2
n, which is

generally more sensitive for pulsed signals whose pulsed
profile can be described by a small number of sinusoidal
harmonics2. If we detect N photons and their pulse
phase is φi (i = 1..N), we define Z2

n as

Z2
n =

2

N

n∑
k=1


 N∑
j=1

cos kφj

2

+

 N∑
j=1

sin kφj

2
 (8)

2 Note that this is close but not equivalent to the incoherent har-
monic summing used in radio searches, (See, e.g. Ransom et al.
2002; Lorimer & Kramer 2012)
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This formula evaluates how well the distribution of pulse
phases is described by a series of n sinusoidal harmonics
of increasing order. The statistic in the case of a single
harmonic, Z2

1 , is also known as the Rayleigh test (Mardia
1975; Gibson et al. 1982). Similarly to S, this statistic
can be used for pulsar searches as well. Given a certain
number of trial pulse periods, one can calculate Z2

n and
select the periods that give the highest value for the
statistic. Z2

n follows a χ2
2n distribution for noise powers

(i.e. the statistic’s values obtained with trial period values
far from the real period), so that it is straightforward
to set “detection” levels or calculate the probability of
rejecting the null hypothesis given a Z2

n value.
To show why the Z2

n statistic is more sensitive than
Sbin for a small number of sinusoidal components, we
can follow Leahy et al. (1983b) and define the “quality
factor” of the statistic as

Q =
Ssig

Sthr − ν
(9)

where Ssig is the statistic’s value of a given pulsed profile,
Sthr is the “threshold” statistic value indicating a given
small p-value for noise powers, and ν is the number
of degrees of freedom. Leahy et al. (1983b) compares
Epoch Folding and the Rayleigh test (Z2

1 ) using square
profiles with different duty cycles (i.e. duration of the
“high” signal value), showing that S is more sensitive
for profiles with shorter duty cycle (duration), while the
Rayleigh test is more sensitive for profiles with longer
duty cycle. In the next section, we will use a similar
approach to show that Z2

n is more sensitive than S in all
cases where the signal can be described by a relatively
small number of harmonics.
Finally, one can, in a single test, determine if the signal

is described by a sum of harmonics, and what is the best
number of harmonics to describe the signal. This is
known as the H test, and it is basically a summary of
multiple Z2

n values, properly normalized so that they can
be compared (de Jager et al. 1989; de Jager & Büsching
2010):

H = max(Z2
m − 4m + 4), m = 1, 20 (10)

with the m corresponding to the maximum usually indi-
cated with M .
While these statistical indicators were developed for

Poisson-distributed data (photon-counting experiments),
they can be adapted to the case of pulsed profiles ob-
tained by, for example, radio telescopes, through a few
simple prescriptions. This paper explains how to adapt
these tests to generic pulsed profiles. We do this in two
steps: 1) in Section 2 we test that the binned version of
the Z2

n statistic proposed by Huppenkothen et al. (2019)

Figure 1. Quality factors for S and Z2
n,bin for binned pulsed

profiles consisting of a single Gaussian with increasing width
(in units of pulse phase, from 0 to 1). Following (Leahy et al.
1983b), we normalized the quality factor by Nf2, where f is
the ratio between the pulsed area and the total area under
the pulsed profile including the DC level.

has the required statistical properties both with white
noise and with pulsed signals; 2) in Section 3 we extend
this formulation by introducing a version of Z2

n for pulsed
profiles with Gaussian uncertainties.

2. EXTENSION OF THE Z STATISTIC FOR
BINNED POISSON DATA

As we have seen, Eq. 8 defines the Z2
n statistic for

unbinned event data. Huppenkothen et al. 2019 intro-
duced a version of the Z2

n test for binned pulsed profiles
obtained from X-ray event data):

Z2
n,bin ≈

2∑
i pi

n∑
k=1

(Nbin∑
i=1

pi cos kφi

)2

+

(
Nbin∑
i=1

pi sin kφi

)2


(11)
where pi, working as a weight, corresponds to the number
of photons in a given profile bin. We know that we need
at least two bins for each cycle to sample a sinusoid
(Nyquist limit), so we expect the approximation to make
little sense if Nbin < 2n. Also, it is reasonable to expect
a better approximation as we sample each harmonic cycle
with more and more bins. Huppenkothen et al. (2019)
prudently recommend to bin the pulsed profile with a
number of bins at least 10 times larger than the number
of harmonics n, but give no justification.
The effect of binning can be quantified through simple

analytical manipulations (developed in Appendix B).
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Calling

Ak =

N∑
j=1

cos kφj (12)

Bk =

N∑
j=1

sin kφj (13)

we can express Z2
n as

Z2
n =

2

N

n∑
k=1

[
A2
k +B2

k

]
(14)

One can demonstrate (see Appendix B) that the binned
approximation gives

Z2
n,bin ≈

2

N

n∑
k=1

(
Nbin

πk
sin

πk

Nbin

)2 [
A2
k +B2

k

]
(15)

Comparing it to Eq. 11, we see that this formula only
differs by the factors

C(k) =

(
Nbin

πk
sin

πk

Nbin

)2

(16)

that go to 1 for k � Nbin and lead to a loss of sensitivity3

of ∼ 40% for k = Nbin/2.
Assuming a pulsed profile of the kind

pi = λ

[
1 +

m∑
l=1

al sin l(φi − φ0,l)

]
(17)

(i.e. a DC level λ plus a finite number m of sinusoidal
harmonics with random phases) we can define a statistic
Ssig as

Ssig ≈
λNbin

2

m∑
l=1

a2l . (18)

It can be shown (See Appendices D and C) that the
statistic Ssig has exactly the same value for S and Z2

n,bin

provided that n ≥ m and one can neglect the binning
(Nbin � 2m) and reduces to the (1/2)NA2 (where N =

λNbin is the total number of photons) given by Leahy
et al. (1983b), for m = 1.
Taking Eq. 9 and comparing the sensitivity of S and

Z2
n,bin, we find the results plotted in Figure 1. Here we

created Gaussian pulsed profiles with increasing width
(and so, a decreasing number of harmonics) and calcu-
lated the following statistic:

3 This is equivalent to the loss of sensitivity in the power density
spectrum due to sampling. See van der Klis (1989), Appendix B

• Z2
n,bin for n=1, ... 20

• S using an increasing number of bins to avoid the
sensitivity loss when Nbin/n ∼ 2

We used a number of bins that oversampled the Gaussian
peak (two points inside 1− σ) in order not to decrease
the sensitivity of any of the methods. Therefore, in
Figure 1, Nbin increases going from right to left. As
expected, Z2

n,bin is always more sensitive than S when
we use a sufficient number of sinusoidal components. The
reason is that the Z2

n,bin threshold level for any given
n is insensitive to the number of bins, if not for small
corrections at small Nbin, while S’s threshold increases
with Nbin. To detect very sharp signals (or high-order
harmonics) we need a large number of profile bins, and
S is systematically noisier than Z2

n,bin. Since the signal
level Ssig is the same for Z2

n,bin and S (Eq. 18), increasing
quadratically with signal amplitude, and the denomina-
tor increases slowly with increasing number of degrees
of freedom (approximately with the square root), the
significance of very strong signals will be very similar
using the two methods.
Z2
n,bin can be used to calculate the H statistic, a single

test which allows to investigate the occurrence of sig-
nals of multiple sinusoids whose number is not known
a priori (Eq. 10). Our generalization of the Z2

n test to
binned data substantially confirms what was described
by de Jager et al. (1989) for the unbinned statistic, and
validates the use of the H test for binned profiles. In the
next section, we further extend this method to generic
profiles (i.e. obtained by any measurements and not
just particle/photon counts), provided that their mea-
surement error is approximately Gaussian and constant
throughout the profile. Hereafter, we will run the Z2

n,bin

analysis using multiple n, and we will be using the H-test
to decide for each profile what number of harmonics M
gives the best detection. Therefore, when we talk about
the Z2

n,bin significance or the H-test significance, we will
be referring to the significance of Z2

n,bin with n = M .

3. THE Z STATISTIC IN THE CASE FOR
NORMALLY DISTRIBUTED DATA

Let us start with a set of N observations {Xj}Nj at
times tj , as defined in Section 1, distributed around a
mean flux µx with a variance of σ2

x. We assume here
that the variance is the same for all bins, σ2

x,j = σ2
x, but

will relax that requirement later. We aim to use the Z2

statistic to compare to a null hypothesis of a constant
flux, hence we also assume that the measurements are
distributed around a constant flux value µx = constant.
Thus, measurements are drawn from a normal distribu-
tion, xj ∼ N (µx, σ

2
x).
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We now compute a pulse profile by distributing fluxes
into Nbin phase bins, and sum the fluxes within each
phase bin to obtain phase-dependent fluxes

pi =

(i+1)Nfmpb∑
j=iNfmpb

xj ∀ i, i = 0, . . . , Nbin − 1 . (19)

Here, Nfmpb is the number of flux measurements in
each phase bin, Nfmpb = N

Nbin
. Because the sum of

Gaussian variables is also distributed as a Gaussian, pi,
too, are distributed normally, with the same mean µp =∑Nfmpb

j=1 µx = µxNfmpb. The variance of the summed
random variable can also be calculated as the sum of
variances:

σ2
p =

Nfmpb∑
j=1

σ2
x = σ2

xNfmpb .

We define the Zn,gauss statistic as

Z2
n,gauss =

1

K

n∑
k=1

(Nbin∑
i=1

pi cos kφi

)2

+

(
Nbin∑
i=1

pi sin kφi

)2


(20)
where K = σ2

PNbin/2 (see below), pi are phase-folded
fluxes in each of Nbin phase bins. Each phase bin is
characterized by a phase φi measured at the mid-point
of the phase bin. Finally, in this general case, we compute
the Z2 statistic over n harmonics. In the following, we
will assume n = 1 for much of this section, but will show
in the end how this case generalizes to n > 1.
In the unbinned Poisson case for which Z2

n was ini-
tially defined, the phases φj are uniform random vari-
ables across the interval [0, 2π]. For the case of summed
Gaussian fluxes, the phases φi are not random variables,
but rather real numbers on a regular grid over the same
interval spanning 0 to 2π. It follows that the sine and
cosine of the phases sinφi and cosφi are also not random
variables, but real numbers over the interval [−1, 1]. In
the following, we will first derive the appropriate distri-
butions for the cosine term, but because trigonometric
identities hold, the sine term will produce random vari-
ables drawn from the same statistical distribution.
Because cosφi is not a random variable and pi is Gaus-

sian, the product will also be distributed normally, with

pi cosφi ∼ N (µp cosφi, σ
2
P cos2 φi)

The sum of the product of summed fluxes pi and cosine
terms amounts to another sum of random variables drawn
from a number of independent and identically distributed

Gaussians, each of which has been scaled by cosφi. We
define the sum as

A =

Nbin∑
i=1

pi cos kφi

This sum, too, yields a Gaussian distribution for which
mean and variance are defined as

µA =

Nbin∑
i=1

µp cosφi (21)

σ2
A =

Nbin∑
i=1

σ2
p cos2 (φi) .

Note that because
∑Nbin

i=1 cosφi = 0, it follows that µA =

0. Similarly, for a variance that is constant across all
profile bins, we can take σ2

p outside of the sum, and
calculate the value for

∑Nbin

i=1 cos2 (φi) as a Riemann
sum:

Nbin∑
i=1

cos2 (φi) =
π

∆φ

where ∆φ is the size of a phase bin, ∆φ = 2π
Nbin

. Thus,
we find that

σ2
A = σ2

P

πNbin

2π
= σ2

P

Nbin

2
(22)

Based on this result, we can now determine the statistical
distribution for A2. In particular, for a Gaussian random
variable X with a standard distribution σ, the variable
normalized by its standard deviation is distributed fol-
lowing a standard chi-square distribution with one degree
of freedom: X2

σ2 ∼ χ2
1. It thus follows that we can define

a variable based on A2, where A is defined above, that
follows a standard χ2

1 distribution.
If

A2 =

(
Nbin∑
i=1

pi cos kφi

)2

then the variable

Q =
A2

σ2
A

=

(∑Nbin

i=1 pi cos kφi

)2
σ2
P
Nbin

2

(23)

follows a standard χ2
1 distribution. We can treat the

second term in the outer sum of the Z2 statistic,

B =

Nbin∑
i=1

pi sin kφi
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in the same way as A. Because trigonometric identities
hold, we obtain another χ2

1 distributed variable for B2.
Adding these (properly normalized) variables together

yields the final Z2 statistic. Because the sum of χ2
1

distributed variables is a χ2
2 distributed variable with

degrees of freedom df = 2, we find that Z2
1 ∼ χ2

2 assuming
the correct normalization constant K, defined for the
case of constant data variances, σP,j = σP as

K = σ2
P

Nbin

2
(24)

Extending this result to n > 1 in order to account for
multiple harmonics is straightforward: each harmonic
adds a variable to the sum drawn from χ2

2. Because
the sum of k random variables, each drawn from a χ2

2

distribution, is another χ2 distribution with df = 2n, we
find that

Zn,gauss ∼ χ2
2n . (25)

3.1. Extension to data sets where the uncertainty varies
with phase

Let us assume a case where σ2
p = σ2

p,i, i.e. the summed
fluxes are still drawn from a normal distribution, but
each with a different variance,

pi ∼ N (µx, σ
2
p,i) .

This change in assumptions alters one important step
of the calculation: in Eq. 22, we have assumed that the
variance of each profile bin is identical, which made it
possible to take that term out of the sum and compute
the sum of all cosφi terms independently. For unequal
variances, this no longer holds, and normalization for the
Z2
n statistic instead becomes

K =

Nbin∑
i=1

σ2
p,i . cos2(φi) (26)

Note that this normalization is a generalization of Eq. 24.
The distributions presented above are exact. For both

unbinned and binned Poisson data, the assumption that
we can write Z2

n ∼ χ2
2n crucially rests on the validity of

the Central Limit Theorem for this case. In the case
of unbinned Poisson data, the phases φj are uniformly
distributed random variables, and the cosine of these
phases is distributed as

cosφj ∼ Arcsin(−1, 1)

where Arcsin(−1, 1) is a scaled arcsine distribution (and
equivalently, sinφj also produces an arcsine distribu-
tion). This distribution is heavily non-Gaussian, and the

sum
∑N
j=1 cosφj for N photons will only approximate a

Gaussian distribution if N is reasonably large.
Similarly, when binned Poisson event rates are used

in Eq. 20 as pi instead of normally distributed measure-
ments, the resulting product pi cosφi will not be drawn
from any analytically known probability distribution. As
a result, Z2

n will only be distributed as the expected
χ2
2n distribution if either the count rates pi in each bin

are large enough that the Poisson counts approximate a
normal distribution, or there are a sufficient number of
bins i that the sum of bins will again tend to a Gaussian.
Also note that in the binned Poisson case with mean

and variance equal to λ, Eq. 24 yields

K = σ2
p

Nbin

2
=
λNbin

2
=

∑
i pi
2

that confirms Eq. 11.

3.2. Extension to unevenly sampled
Gaussian-distributed measurements

In practice, light curves–especially in the optical wave-
length regime–are often subject to observing constraints,
leading to unevenly sampled time series. In calculating
Z2, this translates into phase-binned fluxes pi for which
the number of measurements in each bin differs for each
bin i, Nfmpb = Nfmpb,i. In these cases, it is advisable
to calculate Z2 for the average of fluxes falling into the
same phase bin, rather than the sum, as we have done
above.
In this case, we define

pi =
1

Nfmpb,i

Nfmpb,i∑
j=1

xj ∀ i, i = 0, . . . , Nbin − 1 (27)

In this case, the mean of the resulting variables pi
correspond to the mean of the individual measurements,
µp = µx, and the variance becomes

σ2
p,i =

1

Nfmpb,i
σ2
x . (28)

The remainder of the procedure can be calculated using
the same formalism as for the case described in Section
3.1.

4. TEST THE GAUSSIAN Z AND H TESTS:
SIMULATIONS

Let us now test whether this method produces pre-
dictable values of Z2

n and H, and compare them with the
other statistical indicators used in radio astronomy.
We simulated 10000 pulsed profiles with 1024 bins with

Gaussian errors, varying all parameters (input SNR, peak
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Figure 2. Comparison of the raw statistical value (top) and
the detection significance (bottom) using the standard epoch
folding statistic (Eq. 4) and the Zn,gauss (Eq. 20). In the
signal-dominated regime (high significance) the values from S
and Zn,gauss, and their significances, approach asymptotically.
However, at low SNR the S gives higher values of the statistic,
but Z2

n is more sensitive, yielding a higher significance (see
Section 2). Grey points indicate values below detection level
(these points have invalid significance ratio and are absent in
the bottom plot.)

width, baseline, noise, etc.). The large number of bins
was chosen to minimize binning effects for high-order
harmonics (See Section 2, Eq. 15. We evaluated the
profiles with the following statistic:

• the Epoch folding statistic (Eq. 4), rebinning the
pulsed profile to 8, 16, 32, ... 256 bins. As the EF
statistic is noisier for a higher number of bins, but
on the other hand it might miss sharp profiles for a
small number of bins, we tried various combinations
to be sure we were not underplaying this technique.

• the Z2
n and H statistics (Equations 20 and 10).

The results are plotted in Figure 2. As the plot shows,
the Z2

n statistic has equivalent sensitivity to the EF statis-
tic in the signal-dominated regime, with the advantage
that it allows to classify the signals based on their har-
monic content. However, the Z2

n is more sensitive at low
significance. This is because the noise spectrum of Z2

n is
less noisy (For 2n < nbin, which is always the case), and
a more or less equivalent signal power will “stand out”
more clearly against the noise.

By using the H test, we can run the Z2
n for multiple

values of n and obtain the best number of harmonics to
describe the profile.
Thanks to these tests, we are confident that the method

described in this Section, with the formulation described
in Section 2, allows one to apply the Z2

n and H statis-
tics to pulsar searches conducted with a non-counting
instrument producing data with normally distributed
uncertainties, for example in the radio or optical band.

5. APPLYING THE METHOD TO REAL DATA

The final and most important test is applying the
methods described in Section 3 to real astronomical data.
For this, we used data from a test observation of PSR
B0331+45 taken at the Sardinia Radio Telescope (SRT;
Prandoni et al. 2017). PSR B0331+45 (Dewey et al.
1985) is a relatively slow pulsar (pspin ∼ 269 ms), with a
very sharp profile. We selected a 30-min observation at
L-band (1300-1800 MHz) performed on UT 2016-01-09
as part of routine calibration procedures for a pulsar
survey. The data were acquired using the pulsar DFB3
backend4) with a frequency resolution of 2 MHz and a
time resolution of 128 ms.

5.1. Data processing and pulsar search

We analyzed the data with PULSAR_MINER5, a pipeline
based on PRESTO (Ransom 2011; Ransom et al. 2002).
The observation was plagued by strong RFI, both im-
pulsive and periodic, broad- and narrow-band, which
could not be eliminated completely using PRESTO’s
tool rfifind. A standard blind search was performed,
under the hypothesis that we did not know anything
about the pulsar we are looking for. The data were
dedispersed with 980 dispersion measure (DM) trials, in
the range 2 to 100 pc cm−3. We then used accelsearch
to search for periodicities from 1 ms to 20 s within each
dedispersed time series. The candidate periods were
sifted in order to purge them from the most prominent
false positives. The final candidates from the search are
also saved as text files (with extension .bestprof ), con-
taining the pulse profile and information on the detection
including the period and period derivatives, the refer-
ence time, the detection significance, an estimate of the
noise of the profile, etc. Finally, we applied the methods
described in Section 3 to the profiles of the candidates
obtained from this search.

5.2. Estimating the noise

4 www.jb.man.ac.uk/pulsar/observing/DFB.pdf
5 https://github.com/alex88ridolfi/PULSAR_MINER

www.jb.man.ac.uk/pulsar/observing/DFB.pdf
https://github.com/alex88ridolfi/PULSAR_MINER
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Figure 3. Raw values of the statistics from Zn,gauss and S
for a pulsar search at the Sardinia Radio Telescope. Colors
indicate the number of harmonics corresponding to the best
detection in the Z2

n search, and diamonds indicate the har-
monics of pulsar candidates (we maintained the color coding
of these candidates in the EF panel for an easier comparison).
The S statistic shows significantly higher values of signifi-
cance only for signals with highly distorted pulse shapes, as
expected, due to the high number of harmonics needed to
describe such shapes. Two examples of such signals are shown,
folded, in the upper right panel (note that both pulses have
a fast square wave from RFI superimposed to the profile).

Arguably the most important part of applying the
method is an estimate of the profile noise, σ2

p. The stan-
dard deviation of the profile includes contributions from
both the random noise of the data and the signal vari-
ability. Separating these two components from a folded
profile is in general complicated and requires subtraction
of a model of the profile. However, PRESTO correctly
calculates the noise a priori, from the variability of the
data before folding. We recommend that people using
different software, in particular custom-made software,
do a similar procedure to calculate the standard devi-
ation from Eq. 5 or, equivalently, the profile variance
VAR(p) starting from the data variance VAR(d):

VAR(p) = VAR(d)
Nsamples

Nbin
(29)

where Nsamples is the number of samples in the light
curve.

5.3. Analysis of search candidates

Figure 4. Standard DM versus period plot of the candidates
of the pulsar search in Figure 3, using S and Zn,gauss. The
signals being highly significant, the significance with the two
methods is mostly equivalent. However, the Zn,gauss allows to
easily classify the candidates in terms of shape, and penalizes
profiles containing strong square-wave RFI.

Finally, we applied the statistic to the pulsed profiles
obtained in Section 5.1. In Figures 3 and 4 we show the
results. As expected, similarly to what was found using
simulated data, the values of Zn,gauss and S are generally
very close for candidates with high SNR. We checked
the candidates where this was not true and found that,
invariably, these candidates had very distorted pulsed
profiles, usually with the profile being or containing a
square wave (Figure 3). This tells us that a comparison
between S and Zn,gauss statistics is a good diagnostic
to eliminate some of the strong RFI still present among
the sifted candidates. Figure 4 shows the candidates in
a DM vs period plot, where the color-coding represents
the number of harmonics needed to describe the profile,
while the size represents the significance of the candidates
as calculated using the H test. This, again, turns out
to be a useful way to plot candidates: the candidates
corresponding to higher harmonics of the pulsar show
up at more and more sinusoidal candidates at the same
DM.

6. CONCLUSIONS

In this paper, we outlined a method to apply statistical
tests developed for counting experiments to the folded
profiles of radio pulsars. We did this in two steps: 1)
we showed that the Z2

n statistic can be easily applied
to folded profiles from high-energy pulsars, obtained by
counting the events falling at different pulse phases; 2)
we applied a normalization to radio pulsar profiles that
preserves the signal-to-noise ratio and creates profiles
with the correct statistical properties to apply the binned
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version of Z2
n developed at step 1. We demonstrate how

the Zn,gauss statistic can be a great tool to characterize
the candidates from radio pulsar searches, being at once
more sensitive to low-significance signals and better at
discriminating between pulse shapes. We applied the
method to a real pulsar search, showing how the method
is also a great tool to eliminate RFI candidates. The
Zn,gauss statistic is available in the open-source software
packages for astronomical time series analysis PRESTO
(Ransom 2011), Stingray (Huppenkothen et al. 2016,
2019), and HENDRICS (Bachetti 2018).
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Figure 5. Statistical distribution of the Z2
n values for white noise data, with different values of n, compared to the expected χ2

2n

distributions. We only selected values of Z2
n obtained starting from pulsed profiles with least 2n bins (one needs at least two bins

to contain a sinusoidal harmonic; this is analogous to the Nyquist theorem for the Fourier Transform).

APPENDIX

A. STATISTICAL PROPERTIES OF THE BINNED Z STATISTIC

We verify here that the Z2
n,bin values agree closely with the expected χ2

2n distribution in the case of white noise.
To measure this agreement, we used 10,000,000 simulations of binned profiles with different numbers of bins (between

4 and 1024) and total number of photons (between 10 and 10,000). For each value of n, we selected all simulations with
Nbin > 2n (as per the Nyquist argument in Section 2). Then, we compared the distribution of the Z2

n,bin values with
the expected χ2

2n distribution, in particular in the tails where the values are more important for significance estimates.
From this first test, it is clear that the approximation yields the expected probability distribution for Z2

n for all values
of n if Nbin > 2n (see Figure 5).

B. WHAT IS THE DIFFERENCE BETWEEN THE Z STATISTIC FOR BINNED AND UNBINNED EVENT
DATA?

The difference between the Z2
n formulations in Equations 8 and 11 is the fact that the phase of each event is

approximated with the phase at the middle of a profile bin. Looking at Eq. 8, we see that it is of the form

Z2
n =

2

N

n∑
k=1

[
A2
k +B2

k

]
(B1)
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where

Ak =

N∑
j=1

cos kφj (B2)

Bk =

N∑
j=1

sin kφj (B3)

Now, let us express each phase as the sum of the phase at the center of each bin and an additional (usually small) term

φj = φb(j) + εj (B4)

Using the standard trigonometric formulas for the cosine and sine of sums of angles, Ak and Bk become

Ak =

Nbin∑
b=1

[
cos kφb

wb∑
i=1

cos kεi − sin kφb

wb∑
i=1

sin kεi

]
(B5)

Bk =

Nbin∑
b=1

[
sin kφb

wb∑
i=1

cos kεi + cos kφb

wb∑
i=1

sin kεi

]
(B6)

Let us now take a closer look at the inner sums. We are referring the εi to the center of the profile bins, so it is
reasonable to assume that, in general, they will be equally distributed in a range −π/Nbin ≤ εi ≤ pi/Nbin around the
bin centers7. Therefore,

wb∑
i=1

sin kεi ≈ 0 (B7)

and
wb∑
i=1

cos kεi≈wbmean(cos kεi) (B8)

=wb
1

2αk

∫ αk

−αk

cos kεi dεi (B9)

where
αk =

π

Nbin

so that
wb∑
i=1

cos kεi ≈ wb
sin kαk
kαk

. (B10)

Concluding, Equations B5 and B6 become

A ≈ sin kαk
kαk

Nbin∑
b=1

wb cos kφb (B11)

B ≈ sin kαk
kαk

Nbin∑
b=1

wb sin kφb (B12)

and Eq. B1 becomes

Z2
n ≈

2

N

n∑
k=1

(
sin kαk
kαk

)2
(Nbin∑

b=1

wb cos kφb

)2

+

(
Nbin∑
b=1

wb sin kφb

)2
 (B13)

7 This assumption breaks down for pulse profiles with very sharp fea-
tures well above the noise level, but this implies high significance
in any case
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Comparing it to Eq. 11, we see that this formula only differs by the factor

C(k) =

(
sin kαk
kαk

)2

(B14)

=

(
Nbin

πk
sin

πk

Nbin

)2

(B15)

that goes to 1 for k/Nbin � 1, as expected, and drops to (2/π)2 = 0.405 for k = Nbin/2 .
This is the Z2

n equivalent of the loss of sensitivity of Fourier Power Density Spectra (PDS) at high frequencies due to
sampling: a light curve of length T sampled with N bins is equivalent to convolving a continuous light curve with a
“binning window”, non-zero only between times t− 0.5∆t and t+ 0.5∆t, where ∆t = T/N is the sampling time. The
Fourier transform of this sampling window is (See eq. 2.19 from van der Klis 1989)

B(f) =
sinπfT/N

πfT/N
(B16)

and its square, similarly to Eq. B15, goes from a maximum of 1 at low frequencies to (2/π)2 at the Nyquist frequency,
acting as a low-pass filter.

C. THE BINNED S OF A COMPOSITION OF SINUSOIDAL SIGNALS

Let us consider a pulsed profile composed of a sum of l sinusoidal harmonics with random phases φ0,l. Neglecting
binning effects (i.e. choosing a number of bins Nbin � m), the profile can be described as:

pi = λ

[
1 +

m∑
l=1

al sin l(φi − φ0,l)

]
(C17)

The S statistic in Eq. 7 gives

S=
1

λ

Nbin∑
i=1

(pi − λ)
2 (C18)

=
1

λ

Nbin∑
i=1

[
m∑
l=1

al sin l(φi − φ0,l)

]2
(C19)

=
1

λ

Nbin∑
i=1

[
m∑
l=1

al sin lφi cos lφ0,l − sin lφ0,l cos lφi

]2
(C20)

We now manipulate the trigonometric functions and note that: the sum of any odd power of sinusoidal functions
integrates to zero over a full cycle, so that only the terms with squares survive; the sinusoidal harmonics form an
orthogonal base, so that any integral of products of different harmonics integrates to zero as well. Then, we get

S=
1

λ

m∑
l=1

al

(
cos2 lφ0,l

Nbin∑
i=1

sin2 lφi + sin2 lφ0,l

Nbin∑
i=1

cos2 lφi

)
(C21)

The integral of the square of a sinusoidal harmonic over a pulse profile gives Nbin/2, so it is easy to obtain

Ssig ≈
λNbin

2

n∑
l=1

a2l (C22)

D. THE BINNED Z STATISTIC OF A COMPOSITION OF SINUSOIDAL SIGNALS

Again, we start from the profile in Eq. C17 and calculate Z2
n,bin. We assume that n ≥ m, i.e. the Z2

n,bin formula
contains enough harmonics to describe the signal completely. Also, Nbin � n, so that we can neglect the effect of
binning.
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As we did previously, we divide the Z2
n,bin formula in two terms

Z2
n,bin =

2∑i
pi

n∑
k=1

[
A2
k +B2

k

]
(D23)

where we use the profile bins pi as weights (pi in Eq. 11) and

Ak =λ

Nbin∑
i=1

cos kφi

[
1 +

∑
l

al sin l(φi − φ0,l)

]
(D24)

Bk =λ

Nbin∑
i=1

sin kφi

[
1 +

∑
l

al sin l(φi − φ0,l)

]
(D25)

Applying the same arguments of Appendix C (all sums of odd powers of sinusoidal functions over a full profile go to
zero, orthogonality of sinusoidal harmonics), it is easy to get

Ak =λ
∑
i

cos kφi
∑
l

al (sin lφi cos lφ0,l − cos lφi sin lφ0,l)

=λak
∑
i

cos kφi (sin kφi cos kφ0,k − cos kφi sin kφ0,k)

=λak

[
cos kφ0,k

∑
i

cos kφi sin kφi − sin kφ0,k
∑
i

cos2 kφi

]

=−Nbinλ

2
ak sin kφ0,k (D26)

Bk =−Nbinλ

2
ak cos kφ0,k (D27)

And finally

Z2
n,bin =

2

Nbinλ

∑
k

(
Nbinλa

2
k

2

)2 [
(sin kφ0,k)

2
+ (cos kφ0,k)

2
]

(D28)

=
Nbin

2λ

n∑
k=1

a2k (D29)

E. INTER-BIN PULSE PROFILE CORRELATIONS DUE TO FOLDING METHODOLOGY

As discussed in §1 near Eq. 2, there is an alternative method to fold a time series that is arguably better when the
time series bins are comprised of integrated samples or events. In that case, instead of each time series bin being
treated as a delta function in time, which can be placed at a specific phase in a pulse profile, each time series bin
has a beginning and end in both time and in pulse phase. The time series values are then spread proportionally over
the corresponding pulse profile bins, effectively “drizzling” the integrated data over the corresponding portions of the
accumulating pulse profile. This is, in fact, how the program prepfold from PRESTO folds data.
Because the time series values are spread proportionally, neighboring bins of the pulse profile end up slightly correlated.

The amount of correlation depends on the ratio of the duration in phase of a pulse profile bin, ∆φp = 1/Nbin, to the
duration of a time series bin ∆t in units of pulse phase, ∆φt = ∆t/P , where P is the folding period. The ratio, which
we will call

ψ =
∆φp
∆φt

=
P

Nbin∆t
, (E30)

describes how much time resolution you have in your time series compared to the rapidity of the searched-for
pulsations.
In the limit of small ψ (i.e. values near zero), the pulse profile bins become perfectly correlated (and will therefore

never show any pulsations), whereas for large ψ, the pulse profile bins are basically uncorrelated and we effectively
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reproduce the folding methodology of Eq. 2. Much pulsar searching happens in the middle range where ψ is between
1−100.
The result of these correlations is that the effective number of degrees of freedom ν in the folded profile, for a χ2

sensitivity calculation, for instance, decreases below Nbin − 1. Alternatively, you can think of the effect as decreasing
the variance in, or a smoothing of, the resulting pulse profile.
We have developed a semi-analytic correction C (with help from Paul Demorest and Walter Brisken) to the relevant

statistics due to the correlations of the form:

C = aψ
(
1 + ψb

)(−1/b)
, (E31)

so that the effective number of degrees of freedom νeff to use in statistical tests is νeff = Cν = C(Nbin − 1).
We performed a large number of simulations over a wide range of ψ, using time series of pure Gaussian noise and the

folding code in PRESTO, to determine both the validity of Eq. E31 as well as the values of a and b: a = 0.96 and
b = 1.806. The correction is good to a fractional error of less than a few percent as long as ψ & 0.5. There is a small
dependence on Nbin which becomes apparent when ψ . 0.7.
To correct the measured noise level σmeas in the profile (for estimating a signal-to-noise ratio or flux density via the

radiometer equation, for example), dividing by the square-root of C will inflate σmeas appropriately: σcorr = σmeas/
√
C,

where σcorr is the corrected standard deviation of the profile noise.


