1,598 research outputs found

    Modernization of New York\u27s Land Use Laws Continues to Meet Growing Challenges of Sustainability

    Get PDF
    There has never been a more challenging time to practice land use planning and zoning law in New York. With goals of sustainability at the forefront of the land use regulatory agenda, this brief account of recent developments in land use law highlights some discernable trends, namely: the modernization and increased flexibility of New York State planning and zoning enabling acts, the inspired local initiatives and lethargic State response to affordable housing issues, and the increasing impact of alternative energy systems on local regulatory schemes. Part I of this article explores the impacts on community development caused by the many modifications to New York State’s planning and zoning enabling acts over the last two decades. Particularly, the article identifies the delegation of extensive discretionary authority to local governments as New York’s signature approach to land use control. Part II discusses “affordable housing” as a key attractant for judicial action and local government response. With the exception of the Long Island Workforce Housing Act in 2008, the State has been slow to act on judicial calls to action, forcing local governments to develop unique solutions in order to provide affordable housing. Finally, Part III notes the challenges being faced by lawyers and planners in light of growing preference for alternative energy systems, with specific focus on reactions to Wind Energy and Solar Energy installations

    Nuclear Isomerism in Rhodium

    Get PDF
    Pontecorvo has recently pointed out that Rh^(104) emits numerous electrons of energy 35—60 kev. He ascribes these electrons to the internal conversion of the gamma-radiation emitted when the Rh^(104) nucleus goes from an excited state (4.2-minute period) to the ground state. From the ground state there is beta-emission which gives Pd^(104) and is ascribed to the 44-second period. The emission of the gamma-ray from the excited state is an alternative process to the direct emission of a beta-ray from the excited state. In this latter connection the beta-ray spectra associated with the two periods are of interest

    Interpretation of interbasin exchange in an isopycnal ocean model

    Get PDF
    This work concerns an analysis of inter-basin and inter-layer exchanges in the component ocean part of the coupled ECHAM4/OPYC3 general circulation model, aimed at documenting the simulation of North Atlantic Deep Water (NADW) and related thermohaline circulations in the Indian and Pacific Oceans. The modeled NADW is formed mainly in the Greenland-Iceland-Norwegian Seas through a composite effect of deep convection and downward cross-isopycnal transport. The modeled deep-layer outflow of NADW can reach 16 Sv near 30°S in the South Atlantic, with the corresponding upper-layer return flow mainly coming from the 'cold water path' through Drake Passage. Less than 4 Sv of the Agulhas 'leakage' water contributes to the replacement of NADW along the 'warm water path'. In the South Atlantic Ocean, the model shows that some intermediatte isopycnal layers with potential densities ranging between 27.0 and 27.5 are the major water source that compensate the NADW return flow and enhance the Circumpolar Deep Water (CDW) flowing from the Atlantic into Indian Ocean. The modeled thermohaline circulations in the Indian and Pacific Oceans indicate that the Indian Ocean may play the major role in converting deep water into intermediate water. About 16 Sv of the CDW-originating deep water enters the Indian Ocean northward of 31°S, of which more than 13 Sv 'upwell' mainly near the continental boundaries of Africa, South Asia and Australia through inter-layer exchanges and return to the Antarctic Circumpolar Current (ACC) as intermediate-layer water. As a contrast, only 4 Sv of Pacific intermediate water is connected to 'upwelling' flow southward across 31°S while the magnitude of northward deep flow across 31°S in the Pacific Ocean is significantly greater than that in the Indian Ocean. The model suggests that a large portion of the deep waters, entering the Pacific Ocean (about 14 Sv) 'upwells' continually into some upper layers through the thermocline, and becomes the source of the Indonesian throughflow. Uncertainties in these results may be related to the incomplete adjustment of the model's isopycnal layers and the sensitivity of the Indonesian throughflow to the model's geography and topography

    Framework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT)

    Get PDF
    Recently, Blackburn et al. (2014) developed a simple, objective and transparent method for classifying alien taxa in terms of the magnitude of their detrimental environmental impacts in recipient areas. Here, we present a comprehensive framework and guidelines for implementing this method, which we term the Environmental Impact Classification for Alien Taxa, or EICAT. We detail criteria for applying the EICAT scheme in a consistent and comparable fashion, prescribe the supporting information that should be supplied along with classifications, and describe the process for implementing the method. This comment aims to draw the attention of interested parties to the framework and guidelines, and to present them in their entirety in a location where they are freely accessible to any potential users

    Nuclear Isomerism in Rhodium

    Full text link

    Increasing understanding of alien species through citizen science (Alien-CSI)

    Get PDF
    There is no sign of saturation in accumulation of alien species (AS) introductions worldwide, additionally the rate of spread for some species has also been shown to be increasing. However, the challenges of gathering information on AS are recognized. Recent developments in citizen science (CS) provide an opportunity to improve data flow and knowledge on AS while ensuring effective and high quality societal engagement with the issue of IAS (Invasive Alien Species). Advances in technology, particularly on-line recording and smartphone apps, along with the development of social media, have revolutionized CS and increased connectivity while new and innovative analysis techniques are emerging to ensure appropriate management, visualization, interpretation and use and sharing of the data. In early July 2018 we launched a European CO-operation in Science and Technology (COST) Action to address multidisciplinary research questions in relation to developing and implementing CS, advancing scientific understanding of AS dynamics while informing decision-making specifically implementation of technical requirements of relevant legislation such as the EU Regulation 1143/2014 on IAS. It will also support the EU biodiversity goals and embedding science within society. The Action will explore and document approaches to establishing a European-wide CS AS network. It will embrace relevant innovations for data gathering and reporting to support the implementation of monitoring and surveillance measures, while ensuring benefits for society and citizens, through an AS CS European network. The Action will, therefore, increase levels of participation and quality of engagement with current CS initiatives, ensuring and evaluating educational value, and improve the value outcomes for potential users including citizens, scientists, alien species managers, policy-makers, local authorities, industry and other stakeholders

    Formation of even-numbered hydrogen cluster cations in ultracold helium droplets

    Get PDF
    Neutral hydrogen clusters are grown in ultracold helium nanodroplets by successive pickup of hydrogen molecules. Even-numbered hydrogen cluster cations are observed upon electron-impact ionization with and without attached helium atoms and in addition to the familiar odd-numbered H(n)(+). The helium matrix affects the fragmentation dynamics that usually lead to the formation of overwhelmingly odd-numbered H(n)(+). The use of high-resolution mass spectrometry allows the unambiguous identification of even-numbered H(n)(+) up to n congruent to 120 by their mass excess that distinguishes them from He(n)(+), mixed He(m)H(n)(+), and background ions. The large range in size of these hydrogen cluster ions is unprecedented, as is the accuracy of their definition. Apart from the previously observed magic number n = 6, pronounced drops in the abundance of even-numbered cluster ions are seen at n = 30 and 114, which suggest icosahedral shell closures at H(6)(+)(H(2))(12) and H(6)(+)(H(2))(54). Possible isomers of H(6)(+) are identified at the quadratic configuration interaction with inclusion of single and double excitations (QCISD)/aug-cc-pVTZ level of theory (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3035833

    Radiative Lifetimes of Single Excitons in Semiconductor Quantum Dots- Manifestation of the Spatial Coherence Effect

    Full text link
    Using time correlated single photon counting combined with temperature dependent diffraction limited confocal photoluminescence spectroscopy we accurately determine, for the first time, the intrinsic radiative lifetime of single excitons confined within semiconductor quantum dots. Their lifetime is one (two) orders of magnitude longer than the intrinsic radiative lifetime of single excitons confined in semiconductor quantum wires (wells) of comparable confining dimensions. We quantitatively explain this long radiative time in terms of the reduced spatial coherence between the confined exciton dipole moment and the radiation electromagnetic field.Comment: 4 pages, 3 figure

    Optical Spectroscopy of IRAS 02091+6333

    Full text link
    We present a detailed spectroscopic investigation, spanning four winters, of the asymptotic giant branch (AGB) star IRAS 02091+6333. Zijlstra & Weinberger (2002) found a giant wall of dust around this star and modelled this unique phenomenon. However their work suffered from the quality of the optical investigations of the central object. Our spectroscopic investigation allowed us to define the spectral type and the interstellar foreground extinction more precisely. Accurate multi band photometry was carried out. This provides us with the possibility to derive the physical parameters of the system. The measurements presented here suggest a weak irregular photometric variability of the target, while there is no evidence of a spectroscopic variability over the last four years.Comment: 5 pages, Latex, 3 tables, 4 figures, Astron. & Astrophys. - in pres

    Direct growth of graphene on GaN via plasma-enhanced chemical vapor deposition under N<sub>2</sub> atmosphere

    Get PDF
    One of the bottlenecks in the implementation of graphene as a transparent electrode in modern opto-electronic devices is the need for complicated and damaging transfer processes of high-quality graphene sheets onto the desired target substrates. Here, we study the direct, plasma-enhanced chemical vapor deposition (PECVD) growth of graphene on GaN-based light-emitting diodes (LEDs). By replacing the commonly used hydrogen (H2) process gas with nitrogen (N2), we were able to suppress GaN surface decomposition while simultaneously enabling graphene deposition at lt;800 °C in a single-step growth process. Optimizing the methane (CH4) flow and varying the growth time between 0.5 h and 8 h, the electro-optical properties of the graphene layers could be tuned to sheet resistances as low as ∼1 kΩ/D with a maximum transparency loss of ∼12. The resulting high-quality graphene electrodes show an enhanced current spreading effect and an increase of the emission area by a factor of ∼8 in operating LEDs. © 2020 The Author(s)
    corecore