658 research outputs found
Interaction between the Intergalactic Medium and Galactic Outflows from Dwarf Galaxies
We have carried out 2D hydrodynamical simulations in order to study the
interaction between supernova-powered gas outflows from low-mass galaxies and
the local intergalactic medium (IGM). We are specifically interested in
investigating whether a high pressure IGM, such as that in clusters of
galaxies, can prevent the gas from escaping from the galaxy. The interface
between the outflow and ambient IGM is demarcated by a dense expanding shell
formed by the gas swept-up by the outflow. A sufficiently high IGM pressure can
bring the shell to a halt well before it escapes the galaxy. Galaxies in such
high pressure environments are, however, to be ploughing through the IGM at
relatively high velocities. Hence, they will also be subject to ram pressure,
which acts to strip the gas from the galaxy. We have carried out simulations
that take into account the combined impact of ram pressure and thermal
pressure. We find that ram pressure deforms the shell into a tail-like
structure, fragments it into dense clouds and eventually drags the clouds away
from the galaxy. The clouds are potential sites of star formation and if viewed
during this transient phase, the galaxy will appear to have a low-surface
brightness tail much like the galaxies with diffuse comet-like tail seen in
z=1.15 cluster 3C324. In contrast, the relatively unhindered outflows in low
density, low temperature environments can drive the shells of swept-up gas out
to large distances from the galaxy. Such shells, if they intersect a quasar
line-of-sight, would give rise to Ly absorption lines of the kind seen
in quasar spectra.Comment: 32 pages, 6 encapsulated Postscript figures, 7 gif figures. Accepted
for publication in MNRA
Pre-Heated Isentropic Gas in Groups of Galaxies
We confirm that the standard assumption of isothermal, shock-heated gas in
cluster potentials is unable to reproduce the observed X-ray luminosity-
temperature relation of groups of galaxies. As an alternative, we construct a
physically motivated model for the adiabatic collapse of pre-heated gas into an
isothermal potential that improves upon the original work of Kaiser (1991). The
luminosity and temperature of the gas is calculated, assuming an appropriate
distribution of halo formation times and radiation due to both bremsstrahlung
and recombination processes. This model successfully reproduces the slope and
dispersion of the luminosity-temperature relation of galaxy groups. We also
present calculations of the temperature and luminosity functions for galaxy
groups under the prescription of this model. This model makes two strong
predictions for haloes with total masses M<10^13 M_sun, which are not yet
testable with current data: (1) the gas mass fraction will increase in direct
proportion to the halo mass; (2) the gas temperature will be larger than the
virial temperature of the mass. The second effect is strong enough that group
masses determined from gas temperatures will be overestimated by about an order
of magnitude if it is assumed that the gas temperature is the virial
temperature. The entropy required to match observations can be obtained by
heating the gas at the turnaround time, for example, to about 3 X 10^6 K at
z=1, which is too high to be generated by a normal rate of supernova
explosions. This model breaks down on the scale of low mass clusters, but this
is an acceptable limitation, as we expect accretion shocks to contribute
significantly to the entropy of the gas in such objects.Comment: Final, refereed version, accepted by MNRAS. One new figure and
several clarifying statements have been added. Uses mn.a4.sty (hacked
mn.sty). Also available from
http://astrowww.phys.uvic.ca/~balogh/entropy.ps.g
The large-scale morphology of IRAS galaxies
At present, visual inspection is the only method for comparing the large-scale morphologies in the distribution of galaxies to those in model universes generated by N-body simulations. To remedy the situation, we have developed a set of three structure functions (S1, S2, S3) that quantify the degree of large-scale prolateness, oblateness, and sphericity/uniformity of a 3-D particle distribution and have applied them to a volume-limited (less than = 4000 km/s) sample of 699 IRAS galaxies with f sub 60 greater than 1.2 Jy. To determine the structure functions, we randomly select 500 galaxies as origins of spherical windows of radius R sub w, locate the centroid of the galaxies in the window (assuming all galaxies have equal mass) and then, compute the principal moments of inertia (I sub 1, I sub 2, I sub 3) about the centroid. Each S sub i is a function of (I sub 2)/(I sub 1) and (I sub 3)/I sub 1). S1, S2, and S3 tend to unity for highly prolate, oblate, and uniform distributions, respectively and tend to zero otherwise. The resulting 500 values of S sub i at each scale R sub w are used to construct a histogram
A Weak Gravitational Lensing Analysis of Abell 2390
We report on the detection of dark matter in the cluster Abell 2390 using the
weak gravitational distortion of background galaxies. We find that the cluster
light and total mass distributions are quite similar over an angular scale of
\simeq 7^\prime \;(1 \Mpc). The cluster galaxy and mass distributions are
centered on the cluster cD galaxy and exhibit elliptical isocontours in the
central \simeq 2^\prime \; (280 \kpc). The major axis of the ellipticity is
aligned with the direction defined by the cluster cD and a ``straight arc''
located to the northwest. We determined the radial
mass-to-light profile for this cluster and found a constant value of , which is consistent with other published
determinations. We also compared our weak lensing azimuthally averaged radial
mass profile with a spherical mass model proposed by the CNOC group on the
basis of their detailed dynamical study of the cluster. We find good agreement
between the two profiles, although there are weak indications that the CNOC
density profile may be falling more steeply for
(420\kpc).Comment: 14 pages, latex file. Postscript file and one additional figure are
available at
ftp://magicbean.berkeley.edu/pub/squires/a2390/massandlight.ps.g
Joint Analysis of Cluster Observations: II. Chandra/XMM-Newton X-ray and Weak Lensing Scaling Relations for a Sample of 50 Rich Clusters of Galaxies
We present a study of multiwavelength X-ray and weak lensing scaling
relations for a sample of 50 clusters of galaxies. Our analysis combines
Chandra and XMM-Newton data using an energy-dependent cross-calibration. After
considering a number of scaling relations, we find that gas mass is the most
robust estimator of weak lensing mass, yielding 15 +/- 6% intrinsic scatter at
r500 (the pseudo-pressure YX has a consistent scatter of 22%+/-5%). The scatter
does not change when measured within a fixed physical radius of 1 Mpc. Clusters
with small BCG to X-ray peak offsets constitute a very regular population whose
members have the same gas mass fractions and whose even smaller <10% deviations
from regularity can be ascribed to line of sight geometrical effects alone.
Cool-core clusters, while a somewhat different population, also show the same
(<10%) scatter in the gas mass-lensing mass relation. There is a good
correlation and a hint of bimodality in the plane defined by BCG offset and
central entropy (or central cooling time). The pseudo-pressure YX does not
discriminate between the more relaxed and less relaxed populations, making it
perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic
masses underestimate weak lensing masses by 10% on the average at r500; but
cool-core clusters are consistent with no bias, while non-cool-core clusters
have a large and constant 15-20% bias between r2500 and r500, in agreement with
N-body simulations incorporating unthermalized gas. For non-cool-core clusters,
the bias correlates well with BCG ellipticity. We also examine centroid shift
variance and and power ratios to quantify substructure; these quantities do not
correlate with residuals in the scaling relations. Individual clusters have for
the most part forgotten the source of their departures from self-similarity.Comment: Corrects an error in the X-ray luminosities (erratum
submitted)---none of the other results are affected. Go to
http://sfstar.sfsu.edu/jaco for an electronic fitter and updated quick data
download link
Cold gas in group-dominant elliptical galaxies
We present IRAM 30m telescope observations of the CO(1-0) and (2-1) lines in
a sample of 11 group-dominant elliptical galaxies selected from the CLoGS
nearby groups sample. Our observations confirm the presence of molecular gas in
4 of the 11 galaxies at >4 sigma significance, and combining these with data
from the literature we find a detection rate of 43+-14%, comparable to the
detection rate for nearby radio galaxies, suggesting that group-dominant
ellipticals may be more likely to contain molecular gas than their non-central
counterparts. Those group-dominant galaxies which are detected typically
contain ~2x10^8 Msol of molecular gas, and although most have low star
formation rates (<1 Msol/yr) they have short depletion times, indicating that
the gas must be replenished on timescales ~100 Myr. Almost all of the galaxies
contain active nuclei, and we note while the data suggest that CO may be more
common in the most radio-loud galaxies, the mass of molecular gas required to
power the active nuclei through accretion is small compared to the masses
observed. We consider possible origin mechanisms for the gas, through cooling
of stellar ejecta within the galaxies, group-scale cooling flows, and gas-rich
mergers, and find probable examples of each type within our sample, confirming
that a variety of processes act to drive the build up of molecular gas in
group-dominant ellipticals.Comment: 9 pages, 5 postscript figures, 4 tables, accepted by A&A. Revised
throughout in response to referee's comments, including updates to Table 1
and Figure 4, and addition of Figure
A Low Upper Limit to the Lyman Continuum Emission of two galaxies at z 3
Long exposure, long-slit spectra have been obtained in the UV/optical bands
for two galaxies at z=2.96 and z=3.32 to investigate the fraction of ionizing
UV photons escaping from high redshifts galaxies. The two targets are among the
brightest galaxies discovered by Steidel and collaborators and they have
different properties in terms of Lyman-alpha emission and dust reddening. No
significant Lyman continuum emission has been detected. The noise level in the
spectra implies an upper limit of f_{rel,esc}\equiv 3 f(900)/f(1500)< 16% for
the relative escape fraction of ionizing photons, after correction for
absorption by the intervening intergalactic medium. This upper limit is 4 times
lower than the previous detection derived from a composite spectrum of 29 Lyman
break galaxies at z 3.4. If this value is typical of the escape fraction of the
z 3 galaxies, and is added to the expected contribution of the QSO population,
the derived UV background is in good agreement with the one derived by the
proximity effect.Comment: 16 pages, 2 figures, ApJ Letters in pres
On the Energy Required to Eject Processed Matter from Galaxies
We evaluate the minimum energy input rate that starbursts require for
expelling their newly processed matter from their host galaxies. Special
attention is given to the pressure caused by the environment in which a galaxy
is situated, as well as to the intrinsic rotation of the gaseous component. We
account for these factors and for a massive dark matter distribution, and
develop a self-consistent solution for the interstellar matter gas
distribution. Our results are in excellent agreement with the results of Mac
Low & Ferrara (1999) for galaxies with a flattened disk-like ISM density
distribution and a low intergalactic gas pressure ( 1
cm K). However, our solution also requires a much larger energy input
rate threshold when one takes into consideration both a larger intergalactic
pressure and the possible existence of a low-density, non-rotating, extended
gaseous halo component.Comment: 7 pages, 4 figures, 1 table, Accepted for publication in Ap
The time-evolution of bias
We study the evolution of the bias factor b and the mass-galaxy correlation
coefficient r in a simple analytic model for galaxy formation and the
gravitational growth of clustering. The model shows that b and r can be
strongly time-dependent, but tend to approach unity even if galaxy formation
never ends as the gravitational growth of clustering debiases the older
galaxies. The presence of random fluctuations in the sites of galaxy formation
relative to the mass distribution can cause large and rapidly falling bias
values at high redshift.Comment: 4 pages, with 2 figures included. Typos corrected to match published
ApJL version. Color figure and links at http://www.sns.ias.edu/~max/bias.html
or from [email protected]
- …