2,047 research outputs found

    Relativistic point dynamics and Einstein formula as a property of localized solutions of a nonlinear Klein-Gordon equation

    Full text link
    Einstein's relation E=Mc^2 between the energy E and the mass M is the cornerstone of the relativity theory. This relation is often derived in a context of the relativistic theory for closed systems which do not accelerate. By contrast, Newtonian approach to the mass is based on an accelerated motion. We study here a particular neoclassical field model of a particle governed by a nonlinear Klein-Gordon (KG) field equation. We prove that if a solution to the nonlinear KG equation and its energy density concentrate at a trajectory, then this trajectory and the energy must satisfy the relativistic version of Newton's law with the mass satisfying Einstein's relation. Therefore the internal energy of a localized wave affects its acceleration in an external field as the inertial mass does in Newtonian mechanics. We demonstrate that the "concentration" assumptions hold for a wide class of rectilinear accelerating motions

    Electrodynamics of balanced charges

    Get PDF
    In this work we modify the wave-corpuscle mechanics for elementary charges introduced by us recently. This modification is designed to better describe electromagnetic (EM) phenomena at atomic scales. It includes a modification of the concept of the classical EM field and a new model for the elementary charge which we call a balanced charge (b-charge). A b-charge does not interact with itself electromagnetically, and every b-charge possesses its own elementary EM field. The EM energy is naturally partitioned as the interaction energy between pairs of different b-charges. We construct EM theory of b-charges (BEM) based on a relativistic Lagrangian with the following properties: (i) b-charges interact only through their elementary EM potentials and fields; (ii) the field equations for the elementary EM fields are exactly the Maxwell equations with proper currents; (iii) a free charge moves uniformly preserving up to the Lorentz contraction its shape; (iv) the Newton equations with the Lorentz forces hold approximately when charges are well separated and move with non-relativistic velocities. The BEM theory can be characterized as neoclassical one which covers the macroscopic as well as the atomic spatial scales, it describes EM phenomena at atomic scale differently than the classical EM theory. It yields in macroscopic regimes the Newton equations with Lorentz forces for centers of well separated charges moving with nonrelativistic velocities. Applied to atomic scales it yields a hydrogen atom model with a frequency spectrum matching the same for the Schrodinger model with any desired accuracy.Comment: Manuscript was edited to improve the exposition and to remove noticed typo

    Giant Coulomb broadening and Raman lasing on ionic transitions

    Full text link
    CW generation of anti-Stokes Raman laser on a number of blue-green argon-ion lines (4p-4s, 4p-3d) has been demonstrated with optical pumping from metastable levels 3d'^2G, 3d^4F. It is found, that the population transfer rate is increased by a factor of 3-5 (and hence, the output power of such Raman laser) owing to Coulomb diffusion in the velocity space. Measured are the excitation and relaxation rates for the metastable level. The Bennett hole on the metastable level has been recorded using the probe field technique. It has been shown that the Coulomb diffusion changes shape of the contour to exponential cusp profile while its width becomes 100 times the Lorentzian one and reaches values close to the Doppler width. Such a giant broadening is also confirmed by the shape of the absorption saturation curve.Comment: RevTex 18 pages, 5 figure

    Linear superposition in nonlinear wave dynamics

    Full text link
    We study nonlinear dispersive wave systems described by hyperbolic PDE's in R^{d} and difference equations on the lattice Z^{d}. The systems involve two small parameters: one is the ratio of the slow and the fast time scales, and another one is the ratio of the small and the large space scales. We show that a wide class of such systems, including nonlinear Schrodinger and Maxwell equations, Fermi-Pasta-Ulam model and many other not completely integrable systems, satisfy a superposition principle. The principle essentially states that if a nonlinear evolution of a wave starts initially as a sum of generic wavepackets (defined as almost monochromatic waves), then this wave with a high accuracy remains a sum of separate wavepacket waves undergoing independent nonlinear evolution. The time intervals for which the evolution is considered are long enough to observe fully developed nonlinear phenomena for involved wavepackets. In particular, our approach provides a simple justification for numerically observed effect of almost non-interaction of solitons passing through each other without any recourse to the complete integrability. Our analysis does not rely on any ansatz or common asymptotic expansions with respect to the two small parameters but it uses rather explicit and constructive representation for solutions as functions of the initial data in the form of functional analytic series.Comment: New introduction written, style changed, references added and typos correcte

    Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing

    Full text link
    Utilizing an eigenfunction decomposition, we study the growth and spectra of energy in the vortical and wave modes of a 3D rotating stratified fluid as a function of ϵ=f/N\epsilon = f/N. Working in regimes characterized by moderate Burger numbers, i.e. Bu=1/ϵ2<1Bu = 1/\epsilon^2 < 1 or Bu≥1Bu \ge 1, our results indicate profound change in the character of vortical and wave mode interactions with respect to Bu=1Bu = 1. As with the reference state of ϵ=1\epsilon=1, for ϵ<1\epsilon < 1 the wave mode energy saturates quite quickly and the ensuing forward cascade continues to act as an efficient means of dissipating ageostrophic energy. Further, these saturated spectra steepen as ϵ\epsilon decreases: we see a shift from k−1k^{-1} to k−5/3k^{-5/3} scaling for kf<k<kdk_f < k < k_d (where kfk_f and kdk_d are the forcing and dissipation scales, respectively). On the other hand, when ϵ>1\epsilon > 1 the wave mode energy never saturates and comes to dominate the total energy in the system. In fact, in a sense the wave modes behave in an asymmetric manner about ϵ=1\epsilon = 1. With regard to the vortical modes, for ϵ≤1\epsilon \le 1, the signatures of 3D quasigeostrophy are clearly evident. Specifically, we see a k−3k^{-3} scaling for kf<k<kdk_f < k < k_d and, in accord with an inverse transfer of energy, the vortical mode energy never saturates but rather increases for all k<kfk < k_f. In contrast, for ϵ>1\epsilon > 1 and increasing, the vortical modes contain a progressively smaller fraction of the total energy indicating that the 3D quasigeostrophic subsystem plays an energetically smaller role in the overall dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract

    An Analysis of Acquisition Logistics within the National Aeronautics and Space Administration

    Get PDF
    The purpose of this study was to review past actions and assess current plans for establishing more integrated logistics management in NASA. The focus of this study was acquisition logistics, the beginning of the ILS process. This study includes a historical review of acquisition logistics in NASA\u27s major space programs as well as a review of numerous acquisition logistics models. Logistics managers from the Space Shuttle and Space Station Freedom programs were interviewed, surveyed, and observed to provide evidence of the degree to which these two programs are meeting or have met the objectives of the acquisition logistics model selected as most appropriate. Findings indicated that the Space Station Freedom, like the Space Shuttle program, is losing support and funding for ILS programs. NASA managers are opting to sacrifice long range cost savings in exchange for lower system development costs

    Does Information and Communication Technology Improve Job Satisfaction? The Moderating Role of Sales Technology Orientation

    Get PDF
    Empirical research concerning the role of information and communication technology (ICT) in shaping business-to-business salesforce job satisfaction remains relatively scarce. The authors propose and empirically test a causal model that theoretically represents structural relationships among factors comprising ICT and eventual salesperson job satisfaction. Study results indicate that ICT indirectly influences job satisfaction through salesforce administrative performance. While ICT infrastructure, training, and support positively relate to administrative performance, none of them influence outcome performance significantly. In addition, salesperson technology orientation moderates the effect of both ICT infrastructure and support on job satisfaction. Managerial insights and implications from the research are discussed

    Intermittency and regularity issues in 3D Navier-Stokes turbulence

    No full text
    Two related open problems in the theory of 3D Navier-Stokes turbulence are discussed in this paper. The first is the phenomenon of intermittency in the dissipation field. Dissipation-range intermittency was first discovered experimentally by Batchelor and Townsend over fifty years ago. It is characterized by spatio-temporal binary behaviour in which long, quiescent periods in the velocity signal are interrupted by short, active `events' during which there are violent fluctuations away from the average. The second and related problem is whether solutions of the 3D Navier-Stokes equations develop finite time singularities during these events. This paper shows that Leray's weak solutions of the three-dimensional incompressible Navier-Stokes equations can have a binary character in time. The time-axis is split into `good' and `bad' intervals: on the `good' intervals solutions are bounded and regular, whereas singularities are still possible within the `bad' intervals. An estimate for the width of the latter is very small and decreases with increasing Reynolds number. It also decreases relative to the lengths of the good intervals as the Reynolds number increases. Within these `bad' intervals, lower bounds on the local energy dissipation rate and other quantities, such as \|\bu(\cdot, t)\|_{\infty} and \|\nabla\bu(\cdot, t)\|_{\infty}, are very large, resulting in strong dynamics at sub-Kolmogorov scales. Intersections of bad intervals for n≥1n\geq 1 are related to Scheffer's potentially singular set in time. It is also proved that the Navier-Stokes equations are conditionally regular provided, in a given `bad' interval, the energy has a lower bound that is decaying exponentially in time.Comment: 36 pages, 3 figures and 6 Table

    Experimental demonstration of mode structure in ultralong Raman fiber lasers

    Get PDF
    We present the first experimental demonstration of a resolvable mode structure with spacing c/2nL in the RF spectra of ultralong Raman fiber lasers. The longest ever demonstrated laser cavity (L=84km), RF peaks of ∼100 Hz width and spacing ∼1 kHz have been observed at low intracavity powers. The width of the peaks increases linearly with growing intracavity power and is almost independent of fiber length. © 2007 Optical Society of America
    • …
    corecore