133 research outputs found

    Production of a Beet chlorosis virus full-length cDNA clone by means of Gibson assembly and analysis of biological properties

    Get PDF
    Beet chlorosis virus (genus Polerovirus, family Luteoviridae), which is persistently transmitted by the aphid Myzus persicae, is part of virus yellows in sugar beet and causes interveinal yellowing as well as significant yield loss in Beta vulgaris. To allow reverse genetic studies and replace vector transmission, an infectious cDNA clone under cauliflower mosaic virus 35S control in a binary vector for agrobacterium-mediated infection was constructed using Gibson assembly. Following agroinoculation, the BChV full-length clone was able to induce a systemic infection of the cultivated B. vulgaris. The engineered virus was successfully aphid-transmitted when acquired from infected B. vulgaris and displayed the same host plant spectrum as wild-type virus. This new polerovirus infectious clone is a valuable tool to identify the viral determinants involved in host range and study BChV protein function, and can be used to screen sugar beet for BChV resistance

    Drought reduces transmission of Turnip yellows virus , an insect-vectored circulative virus

    Get PDF
    Application of a severe water deficit to Arabidopsis thaliana plants infected with a mutant of Turnip yellows virus (TuYV, Family Luteoviridae) triggers a significant alteration of several plant phenology traits and strongly reduces the transmission efficiency of the virus by aphids. Although virus accumulation in water-stressed plants was similar to that in plants grown under well-watered conditions, virus accumulation was reduced in aphids fed on plant under water deficit. These results suggest alteration of the aphid feeding behavior on plants under water deficit

    Plant infection by two different viruses induce contrasting changes of vectors fitness and behavior

    Get PDF
    Abstract Insect-vectored plant viruses can induce changes in plant phenotypes, thus influencing plant?vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e., circulative vs. noncirculative). This indirect vector manipulation requires host?virus?vector coevolution and would thus be effective solely in very specific plant?virus?vector species associations. Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency. In anintegrative study, we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV) or the circulative Turnip yellows virus (TuYV) on the host-plant colonization of two aphid species differing in their virus transmission efficiency: the polyphagous Myzus persicae, efficient vector of both viruses, and the Brassicaceae specialist Brevicoryne brassicae, poor vector of TuYV and efficient vector of CaMV. Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e., decreased phloem sap ingestion) and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition. In addition, virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV, that is, enhanced feeding behavior and performances, were favorable to their acquisition and further dispersal. Altogether, this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses. Our results also reinforce the idea that vector manipulation requires coevolution between plant, virus and vector

    Plant and Aphid Partners of Poleroviruses: Role in Virus Transmission by Aphids?

    Get PDF
    Comité de lecture : trueConférence invitée : falseDate de début de l'événement : 2011-07-11Date de fin de l'évenement : 2011-07-14Date de validation : Tue Aug 13 15:11:30 CEST 2013Diffusion de la pièce jointe : Publique, PubliqueIdentifiant : 200587Langue du titre : engNombre de consultation de la notice : 77Nombre de téléchargements de la pièce jointe : 8Pays de l'événement : BRAPublic visé : ScientifiqueType de communication avec actes : Présentation oraleType d'événement : SymposiumPoleroviruses are phloem limited viruses strictly transmitted by aphids in a circulative and non propagative manner. Virions are acquired by aphids when ingesting sap from infected plants. Virus particles cross the gut epithelium and the accessory salivary gland cells before being released, together with saliva, into the plant during a subsequent feed. This highly specific transcytosis mechanism relies on the presence of virus receptors on the surface of the aphid cells. We developed several approaches to identify virus partners in the plant and in the aphid to analyse their role in virus transmission by the vector. By screening different aphid cDNA libraries using a yeast two hybrid system, only few candidates were able to bind virus structural proteins. Among them, we found two nuclear proteins (GAR1 and ALY) which may not be the true virusreceptors but could be considered as virus-sensors. An Ephrin receptor-like protein was also found to interact with the viral proteins. Involvement of these candidates in virus transport through the aphid needs to be analyzed by developing in the insect RNAi-based techniques. These experiments are in progress. We also looked for plant virus-partners and identified several phloem proteins able to bind purified virions in vitro. We showed that these proteins could stimulate virus transmission by aphids when added together with purified virus to the aphid diet (Bencharki et al. 2010, M.P.M.I., 23: 799). By developing a yeast two hybrid system using a phloem specific cDNA library, we identified five additional proteins able to bind viral proteins. Among them, we found ALY proteins already identified as aphid virus-partners suggesting that orthologous plant and aphid proteins could be implicated in the virus cycle. So far, a direct implication of these proteins in aphid transmission has not been observed and experiments are on going to analyze their functions

    In Vitro Acquisition of Specific Small Interfering RNAs Inhibits the Expression of Some Target Genes in the Plant Ectoparasite Xiphinema index

    Get PDF
    Xiphinema index is an important plant parasitic nematode that induces direct damages and specifically transmits the Grapevine fanleaf virus, which is particularly harmful for grapevines. Genomic resources of this nematode species are still limited and no functional gene validation technology is available. RNA interference (RNAi) is a powerful technology to study gene function and here we describe the application of RNAi on several genes in X. index. Soaking the nematodes for 48 h in a suspension containing specific small interfering RNAs resulted in a partial inhibition of the accumulation of some targeted mRNA. However, low reproducible silencing efficiency was observed which could arise from X. index silencing pathway deficiencies. Indeed, essential accustomed proteins for these pathways were not found in the X. index proteome predicted from transcriptomic data. The most reproducible silencing effect was obtained when targeting the piccolo gene potentially involved in endo-exocytosis of synaptic molecules. This represents the first report of gene silencing in a nematode belonging to the Longidoridae family

    Chan-Vese based method to segment mouse brain MRI images: application to cerebral malformation analysis in trisomy 21

    No full text
    International audienceIn this paper, a semi automatic active contour method based on Chan-Vese model is proposed for the segmentation of mouse brain MR images. First, a 2 ½ D strategy is applied on the axial images to segment the 3D volume of interest. The method takes into account the special shape of the object to segment. Moreover, the user defines the limits where to search these contours and also provides an initial contour. This semi automatic method makes that human intervention is limited and the tedious manual handling is greatly reduced. Results have shown that the brain volumes estimated by the method are identical to expert manually estimated volumes. Last but not least, the new method was used in the analysis of the cerebral malformations linked to Trisomy 21: no significant difference of the brain volumes between Tri-somy 21 mice and the control ones were found

    Virus effects on plant quality and vector behavior are species specific and do not depend on host physiological phenotype

    Get PDF
    There is growing evidence that plant viruses manipulate host plants to increase transmission-conducive behaviors by vectors. Reports of this phenomenon frequently include only highly susceptible, domesticated annual plants as hosts, which constrains our ability to determine whether virus effects are a component of an adaptive strategy on the part of the pathogen or simply by-products of pathology. Here, we tested the hypothesis that transmission-conducive effects of a virus (Turnip yellows virus [TuYV]) on host palatability and vector behavior (Myzus persicae) are linked with host plant tolerance and physiological phenotype. Our study system consisted of a cultivated crop, false flax (Camelina sativa) (Brassicales: Brassicaceae), a wild congener (C. microcarpa), and a viable F1 hybrid of these two species. We found that the most tolerant host (C. microcarpa) exhibited the most transmission-conducive changes in phenotype relative to mock-inoculated healthy plants: Aphids preferred to settle and feed on TuYV-infected C. microcarpa and did not experience fitness changes due to infection—both of which will increase viruliferous aphid numbers. In contrast, TuYV induced transmission-limiting phenotypes in the least tolerant host (C. sativa) and to a greater degree in the F1 hybrid, which exhibited intermediate tolerance to infection. Our results provide no evidence that virus effects track with infection tolerance or physiological phenotype. Instead, vector preferences and performance are driven by host-specific changes in carbohydrates under TuYV infection. These results provide evidence that induction of transmission-enhancing phenotypes by plant viruses is not simply a by-product of general pathology, as has been proposed as an explanation for putative instances of parasite manipulation by viruses and many other taxa

    Building the Future Therapies for Down Syndrome:The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21

    Isolement et caracterisation du gene de la proteine capsidique du virus de la mosaique chromee de la vigne (GCMV) : expression in vitro et dans les plantes transgeniques

    No full text
    *INRA, Centre de Recherches de Bordeaux (FRA) Diffusion du document : INRA, Centre de Recherches de Bordeaux (FRA) Diplôme : Dr. d'Universiténon disponibleequence. Cet arn, de 4441 nucleotides de long, code potentiellement pour une proteine de 146 kda. Ceci confirme les experiences de traduction in vitro de l'arn2 qui ont montre qu'il etait traduit sous forme d'une polyproteine liberant a partir de son extremite c-terminale la proteine capsidique. Le sequencage chimique de l'extremite n-terminale de la proteine capsidique isolee de virions ainsi que la recherche de sites de clivage reconnus par les proteases virales nous ont conduit a considerer deux sites potentiels de clivage liberant la proteine capsidique (r/a et q/a respectivement en position 810/811 et 855/856). Des constructions pouvant conduire a la synthese d'une proteine ayant l'une ou l'autre des deux extremites determinees precedemment ont ete obtenues. Les polypeptides correspondant au site de clivage r/a ont la meme migration electrophoretique que la proteine capsidique isolee de virions ce qui tend a demontrer que c'est le veritable site de clivage de la capside. Ces genes hybrides ont ete sous-clones dans des vecteurs intermediaires et introduits dans le genome de tabacs qui expriment la proteine capsidique du gcm

    Isolement et caracterisation du gene de la proteine capsidique du virus de la mosaieque chromee de la vigne (GCMV): expression in vitro et dans des plantes transgeniques

    No full text
    SIGLEINIST T 72762 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore