2,629 research outputs found

    Dehydration and hyponatremia in professional rugby union players: a cohort study observing english premiership rugby union players during match play, field, and gym training in cool environmental conditions.

    Get PDF
    Fluid and sodium balance is important for performance and health; however, limited data in rugby union players exist. The purpose of the study was to evaluate body mass (BM) change (dehydration) and blood[Na] change during exercise. Data were collected from 10 premiership rugby union players, over a 4-week period. Observations included match play (23 subject observations), field (45 subject observations), and gym (33 subject observations) training sessions. Arrival urine samples were analyzed for osmolality, and samples during exercise were analyzed for [Na]. Body mass and blood[Na] were determined pre- and postexercise. Sweat[Na] was analyzed from sweat patches worn during exercise, and fluid intake was measured during exercise. Calculations of fluid and Na loss were made. Mean arrival urine osmolality was 423 ± 157 mOsm·kg, suggesting players were adequately hydrated. After match play, field, and gym training, BM loss was 1.0 ± 0.7, 0.3 ± 0.6, and 0.1 ± 0.6%, respectively. Fluid loss was significantly greater during match play (1.404 ± 0.977 kg) than field (1.008 ± 0.447 kg, p = 0.021) and gym training (0.639 ± 0.536 kg, p 1.0%. The findings demonstrate that rugby union players are adequately hydrated on arrival, fluid intake is excessive compared with fluid loss, and some players are at risk of developing hyponatremia

    Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    Get PDF
    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6mg center dot day(-1)) induced tolerance during 5 days in Sprague-Dawley rats, after which s.c. ketamine (10mg center dot kg(-1)) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naive rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90min after administration) lasting up to 150min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naive rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans.Peer reviewe

    DAzLE: The Dark Ages z (redshift) Lyman-alpha Explorer

    Full text link
    DAzLE is an near infrared narrowband differential imager being built by the Institute of Astronomy, Cambridge, in collaboration with the Anglo-Australian observatory. It is a special purpose instrument designed with a sole aim; the detection of redshifted Lyman-alpha emission from star forming galaxies at z>7. DAzLE will use pairs of high resolution (R=1000) narrowband filters to exploit low background `windows' in the near infrared sky emission spectrum. This will enable it to reach sensitivities of ~2E-21 W/m^2, thereby allowing the detection of z>7 galaxies with star formation rates as low as a few solar masses per year. The design of the instrument, and in particular the crucial narrowband filters, are presented. The predicted performance of DAzLE, including the sensitivity, volume coverage and expected number counts, is discussed. The current status of the DAzLE project, and its projected timeline, are also presented.Comment: 11 pages, 7 figures, to appear in Proceedings of SPIE Vol. 5492, Ground-based Instrumentation for Astronom

    Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders

    Get PDF
    Background: Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. Results: Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. Conclusions: Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology. © 2014 Pineda et al.; licensee BioMed Central Ltd

    The substructure of three repetitive DNA regions of Schistosoma haematobium group species as a potential marker for species recognition and interbreeding detection

    Get PDF
    The file attached is the Published/publisher’s pdf version of the article.© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    MTN-001: Randomized Pharmacokinetic Cross-Over Study Comparing Tenofovir Vaginal Gel and Oral Tablets in Vaginal Tissue and Other Compartments

    Get PDF
    Background: Oral and vaginal preparations of tenofovir as pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection have demonstrated variable efficacy in men and women prompting assessment of variation in drug concentration as an explanation. Knowledge of tenofovir concentration and its active form, tenofovir diphosphate, at the putative vaginal and rectal site of action and its relationship to concentrations at multiple other anatomic locations may provide key information for both interpreting PrEP study outcomes and planning future PrEP drug development. Objective: MTN-001 was designed to directly compare oral to vaginal steady-state tenofovir pharmacokinetics in blood, vaginal tissue, and vaginal and rectal fluid in a paired cross-over design. Methods and Findings: We enrolled 144 HIV-uninfected women at 4 US and 3 African clinical research sites in an open label, 3-period crossover study of three different daily tenofovir regimens, each for 6 weeks (oral 300 mg tenofovir disoproxil fumarate, vaginal 1% tenofovir gel [40 mg], or both). Serum concentrations after vaginal dosing were 56-fold lower than after oral dosing (p<0.001). Vaginal tissue tenofovir diphosphate was quantifiable in ≥90% of women with vaginal dosing and only 19% of women with oral dosing. Vaginal tissue tenofovir diphosphate was ≥130-fold higher with vaginal compared to oral dosing (p<0.001). Rectal fluid tenofovir concentrations in vaginal dosing periods were higher than concentrations measured in the oral only dosing period (p<0.03). Conclusions: Compared to oral dosing, vaginal dosing achieved much lower serum concentrations and much higher vaginal tissue concentrations. Even allowing for 100-fold concentration differences due to poor adherence or less frequent prescribed dosing, vaginal dosing of tenofovir should provide higher active site concentrations and theoretically greater PrEP efficacy than oral dosing; randomized topical dosing PrEP trials to the contrary indicates that factors beyond tenofovir's antiviral effect substantially influence PrEP efficacy. Trial Registration: ClinicalTrials.gov NCT00592124

    Minimal Model Holography for SO(2N)

    Full text link
    A duality between the large N 't Hooft limit of the WD_N minimal model CFTs and a higher spin gravity theory on AdS3 is proposed. The gravity theory has massless spin fields of all even spins s=2,4,6,..., as well as two real scalar fields whose mass is determined by the 't Hooft parameter of the CFT. We show that, to leading order in the large N limit, the 1-loop partition function of the higher spin theory matches precisely with the CFT partition function.Comment: 21 pages, LaTe

    Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with Schistosomiasis Control Initiative-assisted programmes

    Get PDF
    The last decade has seen an expansion of national schistosomiasis control programmes in Africa based on large-scale preventative chemotherapy. In many areas this has resulted in considerable reductions in infection and morbidity levels in treated individuals. In this paper, we quantify changes in the force of infection (FOI), defined here as the per (human) host parasite establishment rate, to ascertain the impact on transmission of some of these programmes under the umbrella of the Schistosomiasis Control Initiative (SCI)

    The Alstrom Syndrome Protein, ALMS1, Interacts with alpha-Actinin and Components of the Endosome Recycling Pathway

    Get PDF
    Alström syndrome (ALMS) is a progressive multi-systemic disorder characterized by cone-rod dystrophy, sensorineural hearing loss, childhood obesity, insulin resistance and cardiac, renal, and hepatic dysfunction. The gene responsible for Alström syndrome, ALMS1, is ubiquitously expressed and has multiple splice variants. The protein encoded by this gene has been implicated in ciliary function, cell cycle control, and intracellular transport. To gain better insight into the pathways through which ALMS1 functions, we carried out a yeast two hybrid (Y2H) screen in several mouse tissue libraries to identify ALMS1 interacting partners. The majority of proteins found to interact with the murine carboxy-terminal end (19/32) of ALMS1 were α-actinin isoforms. Interestingly, several of the identified ALMS1 interacting partners (α-actinin 1, α-actinin 4, myosin Vb, rad50 interacting 1 and huntingtin associated protein1A) have been previously associated with endosome recycling and/or centrosome function. We examined dermal fibroblasts from human subjects bearing a disruption in ALMS1 for defects in the endocytic pathway. Fibroblasts from these patients had a lower uptake of transferrin and reduced clearance of transferrin compared to controls. Antibodies directed against ALMS1 N- and C-terminal epitopes label centrosomes and endosomal structures at the cleavage furrow of dividing MDCK cells, respectively, suggesting isoform-specific cellular functions. Our results suggest a role for ALMS1 variants in the recycling endosome pathway and give us new insights into the pathogenesis of a subset of clinical phenotypes associated with ALMS
    corecore