1,050 research outputs found

    Neuronal synchrony: peculiarity and generality

    Get PDF
    Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their “dynamical repertoire” includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale

    Dynamical model of sequential spatial memory: winnerless competition of patterns

    Full text link
    We introduce a new biologically-motivated model of sequential spatial memory which is based on the principle of winnerless competition (WLC). We implement this mechanism in a two-layer neural network structure and present the learning dynamics which leads to the formation of a WLC network. After learning, the system is capable of associative retrieval of pre-recorded sequences of spatial patterns.Comment: 4 pages, submitted to PR

    Lattice QCD Calculation of Electroweak Box Contributions to Superallowed Nuclear and Neutron Beta Decays

    Full text link
    We present the first lattice QCD calculation of the universal axial γW\gamma W-box contribution γWVA\square_{\gamma W}^{VA} to both superallowed nuclear and neutron beta decays. This contribution emerges as a significant component within the theoretical uncertainties surrounding the extraction of Vud|V_{ud}| from superallowed decays. Our calculation is conducted using two domain wall fermion ensembles at the physical pion mass. To construct the nucleon 4-point correlation functions, we employ the random sparsening field technique. Furthermore, we incorporate long-distance contributions to the hadronic function using the infinite-volume reconstruction method. Upon performing the continuum extrapolation, we arrive at γWVA=3.65(8)lat(1)PT×103\square_{\gamma W}^{VA}=3.65(8)_{\mathrm{lat}}(1)_{\mathrm{PT}}\times10^{-3}. Consequently, this yields a slightly higher value of Vud=0.97386(11)exp.(9)RC(27)NS|V_{ud}|=0.97386(11)_{\mathrm{exp.}}(9)_{\mathrm{RC}}(27)_{\mathrm{NS}}, reducing the previous 2.1σ2.1\sigma tension with the CKM unitarity to 1.8σ1.8\sigma. Additionally, we calculate the vector γW\gamma W-box contribution to the axial charge gAg_A, denoted as γWVV\square_{\gamma W}^{VV}, and explore its potential implications.Comment: 9 pages, 10 figure

    Self-organization in the olfactory system: one shot odor recognition in insects

    Get PDF
    We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons

    Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    Get PDF
    Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. H-bonds involving atoms from residues that are close to each other in the main-chain sequence stabilize secondary structure elements. H-bonds between atoms from distant residues stabilize a protein’s tertiary structure. However, H-bonds greatly vary in stability. They form and break while a protein deforms. For instance, the transition of a protein from a nonfunctional to a functional state may require some H-bonds to break and others to form. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. Other local interactions may reinforce (or weaken) an H-bond. This paper describes inductive learning methods to train a protein-independent probabilistic model of H-bond stability from molecular dynamics (MD) simulation trajectories. The training data describes H-bond occurrences at successive times along these trajectories by the values of attributes called predictors. A trained model is constructed in the form of a regression tree in which each non-leaf node is a Boolean test (split) on a predictor. Each occurrence of an H-bond maps to a path in this tree from the root to a leaf node. Its predicted stability is associated with the leaf node. Experimental results demonstrate that such models can predict H-bond stability quite well. In particular, their performance is roughly 20 % better than that of models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a give

    Dynamical principles in neuroscience

    Full text link
    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and Fundación BBVA

    Validation of a susceptibility, benefits, and barrier scale for mammography screening among Peruvian women: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perceived beliefs about breast cancer and breast cancer screening are important predictors for mammography utilization. This study adapted and validated the Champion's scale in Peru. This scale measures perceived susceptibility for breast cancer and perceived benefits and barriers for mammography.</p> <p>Methods</p> <p>A cross-sectional study was conducted among women ages 40 to 65 attending outpatient gynecology services in a public hospital in Peru. A group of experts developed and pre-tested a Spanish version of the Champion's scale to assess its comprehensibility (N = 20). Factor analysis, internal consistency, and test-retest reliability analyses were performed (N = 285). Concurrent validity compared scores from participants who had a mammogram and those who did not have it in the previous 15 months. T-test and multiple regression analysis adjusting for socio-demographic factors, mammography knowledge and other preventive behaviors were performed.</p> <p>Results</p> <p>The construct validity and reliability were optimal. Cronbach-Alpha coefficients were 0.75 (susceptibility), 0.72 (benefits) and 0.86 (barriers). Concurrent validity analysis showed an association between barriers and mammography screening use in bivariate (22.3 ± 6.7 vs. 30.2 ± 7.6; p < 0.001) and multiple regression analysis (OR = 0.28, 95% CI = 0.18-0.43). Ages 50-60 years (OR = 2.35, 95% CI = 1.19-4.65), history of prior Papanicolaou test (OR = 3.69, 95% CI = 1.84-7.40), and knowledge about breast cancer and mammography (OR = 3.69, 95% CI = 1.84-7.40) were also independently associated with mammography screening use.</p> <p>Conclusion</p> <p>Concurrent validity analysis showed that the Champion's scale has important limitations for assessing perceived susceptibility for breast cancer and perceived benefits for mammography among Peruvian women. There is still a need for developing valid and reliable instruments for measuring perceived beliefs about breast cancer and mammography screening among Peruvian women.</p

    Novel Decapeptides that Bind Avidly and Deliver Radioisotope to Colon Cancer Cells

    Get PDF
    The rapidly growing field of targeted tumor therapy often utilizes an antibody, sometimes tagged with a tumor-ablating material such as radioisotope, directed against a specific molecule.This report describes the discovery of nine novel decapeptides which can be radioactively labeled, bind to, and deliver (32)P to colon cancer cells. The decapeptides vary from one another by one to three amino acids and demonstrate vastly different binding abilities. The most avidly binding decapeptide can permanently deliver very high levels of radioisotope to the adenocarcinoma cancer cell lines at an efficiency 35 to 150 times greater than to a variety of other cell types, including cell lines derived from other types of cancer or from normal tissue.This experimental approach represents a new example of a strategy, termed peptide binding therapy, for the potential treatment of colorectal and other adenocarcinomas

    Betulin Is a Potent Anti-Tumor Agent that Is Enhanced by Cholesterol

    Get PDF
    Betulinic Acid (BetA) and its derivatives have been extensively studied in the past for their anti-tumor effects, but relatively little is known about its precursor Betulin (BE). We found that BE induces apoptosis utilizing a similar mechanism as BetA and is prevented by cyclosporin A (CsA). BE induces cell death more rapidly as compared to BetA, but to achieve similar amounts of cell death a considerably higher concentration of BE is needed. Interestingly, we observed that cholesterol sensitized cells to BE-induced apoptosis, while there was no effect of cholesterol when combined with BetA. Despite the significantly enhanced cytotoxicity, the mode of cell death was not changed as CsA completely abrogated cell death. These results indicate that BE has potent anti-tumor activity especially in combination with cholesterol

    A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean

    Get PDF
    Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species
    corecore