2,146 research outputs found

    Augmentation of nucleon-nucleus scattering by information entropy

    Full text link
    Quantum information entropy is calculated from the nucleon nucleus forward scattering amplitudes. Using a representative set of nuclei, from 4^4He to 208^{208}Pb, and energies, Tlab<1T_{lab} < 1\,[GeV], we establish a linear dependence of quantum information entropy as functions of logarithm nuclear mass AA and logarithm projectile energy TlabT_{lab}.Comment: 5 pages, 2 figure

    Incomplete quantum process tomography and principle of maximal entropy

    Full text link
    The main goal of this paper is to extend and apply the principle of maximum entropy (MaxEnt) to incomplete quantum process estimation tasks. We will define a so-called process entropy function being the von Neumann entropy of the state associated with the quantum process via Choi-Jamiolkowski isomorphism. It will be shown that an arbitrary process estimation experiment can be reformulated in a unified framework and MaxEnt principle can be consistently exploited. We will argue that the suggested choice for the process entropy satisfies natural list of properties and it reduces to the state MaxEnt principle, if applied to preparator devices.Comment: 8 pages, comments welcome, references adde

    Configuration mixing in 188^{188}Pb : band structure and electromagnetic properties

    Full text link
    In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective bands in 188^{188}Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct a set of collective bands and discuss in detail the B(E2)-values. We also perform an analysis of these theoretical results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr

    Shannon dimensionality of quantum channels and its application to photon entanglement

    Get PDF
    We introduce the concept of Shannon dimensionality D as a new way to quantify bipartite entanglement as measured in an experiment. This is applied to orbital-angular-momentum entanglement of two photons, using two state analyzers composed of a rotatable angular-sector phase plate that is lens-coupled to a single-mode fiber. We can deduce the value of D directly from the observed two-photon coincidence fringe. In our experiment, D varies between 2 and 6, depending on the experimental conditions. We predict how the Shannon dimensionality evolves when the number of angular sectors imprinted in the phase plate is increased and anticipate that D = 50 is experimentally within reach.Comment: 4 pages, 3 figures, accepted for Physical Review Letter

    `Classical' quantum states

    Full text link
    We show that several classes of mixed quantum states in finite-dimensional Hilbert spaces which can be characterized as being, in some respect, 'most classical' can be described and analyzed in a unified way. Among the states we consider are separable states of distinguishable particles, uncorrelated states of indistinguishable fermions and bosons, as well as mixed spin states decomposable into probabilistic mixtures of pure coherent states. The latter were the subject of the recent paper by Giraud et. al., who showed that in the lowest-dimensional, nontrivial case of spin 1, each such state can be decomposed into a mixture of eight pure states. Using our method we prove that in fact four pure states always suffice.Comment: revtex, 17 page

    Positrons from particle dark-matter annihilation in the Galactic halo: propagation Green's functions

    Get PDF
    We have made a calculation of the propagation of positrons from dark-matter particle annihilation in the Galactic halo in different models of the dark matter halo distribution using our 3D code, and present fits to our numerical propagation Green's functions. We show that the Green's functions are not very sensitive to the dark matter distribution for the same local dark matter energy density. We compare our predictions with computed cosmic ray positron spectra (``background'') for the ``conventional'' CR nucleon spectrum which matches the local measurements, and a modified spectrum which respects the limits imposed by measurements of diffuse Galactic gamma-rays, antiprotons, and positrons. We conclude that significant detection of a dark matter signal requires favourable conditions and precise measurements unless the dark matter is clumpy which would produce a stronger signal. Although our conclusion qualitatively agrees with that of previous authors, it is based on a more realistic model of particle propagation and thus reduces the scope for future speculations. Reliable background evaluation requires new accurate positron measurements and further developments in modelling production and propagation of cosmic ray species in the Galaxy.Comment: 8 pages, 6 ps-figures, 3 tables, uses revtex. Accepted for publication in Physical Review D. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    The Geroch group in the Ashtekar formulation

    Get PDF
    We study the Geroch group in the framework of the Ashtekar formulation. In the case of the one-Killing-vector reduction, it turns out that the third column of the Ashtekar connection is essentially the gradient of the Ernst potential, which implies that the both quantities are based on the ``same'' complexification. In the two-Killing-vector reduction, we demonstrate Ehlers' and Matzner-Misner's SL(2,R) symmetries, respectively, by constructing two sets of canonical variables that realize either of the symmetries canonically, in terms of the Ashtekar variables. The conserved charges associated with these symmetries are explicitly obtained. We show that the gl(2,R) loop algebra constructed previously in the loop representation is not the Lie algebra of the Geroch group itself. We also point out that the recent argument on the equivalence to a chiral model is based on a gauge-choice which cannot be achieved generically.Comment: 40 pages, revte

    Duality in a fermion-like formulation for the electromagnetic field

    Get PDF
    We employ the Dirac-like equation for the gauge field proposed by Majorana to obtain an action that is symmetric under duality transformation. We also use the equivalence between duality and chiral symmetry in this fermion-like formulation to show how the Maxwell action can be seen as a mass term.Comment: 4 pages. Revtex. Final version to be published in Phys. Rev.

    Partitioned trace distances

    Full text link
    New quantum distance is introduced as a half-sum of several singular values of difference between two density operators. This is, up to factor, the metric induced by so-called Ky Fan norm. The partitioned trace distances enjoy similar properties to the standard trace distance, including the unitary invariance, the strong convexity and the close relations to the classical distances. The partitioned distances cannot increase under quantum operations of certain kind including bistochastic maps. All the basic properties are re-formulated as majorization relations. Possible applications to quantum information processing are briefly discussed.Comment: 8 pages, no figures. Significant changes are made. New section on majorization is added. Theorem 4.1 is extended. The bibliography is enlarged
    • …
    corecore