26 research outputs found

    Isolated hypercholesterolemia leads to steatosis in the liver without affecting the pancreas

    Get PDF
    Abstract Background Lipid accumulation in the liver and pancreas is primarily caused by combined hyperlipidemia. However, the effect of isolated hypercholesterolemia without hypertriglyceridemia is not fully described. Therefore, our aim was to investigate whether hypercholesterolemia alone leads to alterations both in hepatic and pancreatic lipid panel and histology in rats. Methods Male Wistar rats were fed with 2% cholesterol +0.25% cholate-supplemented diet or standard chow for 12 weeks. Blood was collected at weeks 0, 4, 8 and 12 to measure serum cholesterol and triglyceride levels. At week 12, both the pancreas and the liver were isolated for further histological and biochemical analysis. Hepatic and plasma fatty acid composition was assessed by gas chromatography. Expression of mRNA of major enzymes involved in saturated/unsaturated fatty acid synthesis was analyzed by qPCR. In separate experiments serum enzyme activities and insulin levels were measured at week 9. Results At week 12, rats fed with 2% cholesterol +0.25% cholate-supplemented diet were characterized by elevated serum cholesterol (4.09 ± 0.20 vs. 2.89 ± 0.22 mmol/L, *p < 0.05) while triglyceride (2.27 ± 0.05 vs. 2.03 ± 0.03 mmol/L) and glucose levels (5.32 ± 0.14 vs. 5.23 ± 0.10 mmol/L) remained unchanged. Isolated hypercholesterolemia increased hepatic lipid accumulation, hepatic cholesterol (5.86 ± 0.22 vs. 1.60 ± 0.15 ng/g tissue, *p < 0.05) and triglyceride contents (19.28 ± 1.42 vs. 6.78 ± 0.71 ng/g tissue, *p < 0.05), and hepatic nitrotyrosine level (4.07 ± 0.52 vs. 2.59 ± 0.31 ng/mg protein, *p < 0.05). The histology and tissue lipid content of the pancreas was not affected. Serum total protein level, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities remained unchanged in response to isolated hypercholesterolemia while serum alkaline phosphatase activity (ALP) significantly increased. Plasma insulin levels did not change in response to isolated hypercholesterolemia suggesting an intact endocrine function of the pancreas. Isolated hypercholesterolemia caused a significantly increased hepatic and serum fatty acid level associated with a marked alteration of fatty acid composition. Hepatic expression of Δ9-desaturase (SCD1) was increased 4.92×, while expression of Δ5-desaturase and Δ6-desaturase were decreased (0.447× and 0.577×, respectively) due to isolated hypercholesterolemia. Conclusions Isolated hypercholesterolemia leads to hepatic steatosis and marked alterations in the hepatic lipid profile without affecting the pancreas. Altered fatty acid profile might mediate harmful effects of cholesterol in the liver

    Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice

    Get PDF
    We investigated the relationship between gut health, visceral fat dysfunction and metabolic disorders in diet-induced obesity. C57BL/6J mice were fed control or high saturated fat diet (HFD). Circulating glucose, insulin and inflammatory markers were measured. Proximal colon barrier function was assessed by measuring transepithelial resistance and mRNA expression of tight-junction proteins. Gut microbiota profile was determined by 16S rDNA pyrosequencing. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 mRNA levels were measured in proximal colon, adipose tissue and liver using RT-qPCR. Adipose macrophage infiltration (F4/80+) was assessed using immunohistochemical staining. HFD mice had a higher insulin/glucose ratio (P = 0.020) and serum levels of serum amyloid A3 (131%; P = 0.008) but reduced circulating adiponectin (64%; P = 0.011). In proximal colon of HFD mice compared to mice fed the control diet, transepithelial resistance and mRNA expression of zona occludens 1 were reduced by 38% (P<0.001) and 40% (P = 0.025) respectively and TNF-α mRNA level was 6.6-fold higher (P = 0.037). HFD reduced Lactobacillus (75%; P<0.001) but increased Oscillibacter (279%; P = 0.004) in fecal microbiota. Correlations were found between abundances of Lactobacillus (r = 0.52; P = 0.013) and Oscillibacter (r = −0.55; P = 0.007) with transepithelial resistance of the proximal colon. HFD increased macrophage infiltration (58%; P = 0.020), TNF-α (2.5-fold, P<0.001) and IL-6 mRNA levels (2.5-fold; P = 0.008) in mesenteric fat. Increased macrophage infiltration in epididymal fat was also observed with HFD feeding (71%; P = 0.006) but neither TNF-α nor IL-6 was altered. Perirenal and subcutaneous adipose tissue showed no signs of inflammation in HFD mice. The current results implicate gut dysfunction, and attendant inflammation of contiguous adipose, as salient features of the metabolic dysregulation of diet-induced obesity

    Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice

    No full text
    Inulin-type fructans (ITF) are nondigestible/fermentable carbohydrates which are able - through the modification of the gut microbiota - to counteract high-fat (HF) diet-induced obesity, endotoxemia and related-metabolic alterations. However, their influence on adipose tissue metabolism has been poorly studied until now. The aim of this study was to assess the influence of ITF supplementation on adipose tissue metabolism, by focusing on a G protein-coupled receptor (GPR), GPR43, as a potential link between gut fermentation processes and white adipose tissue development. Male C57bl6/J mice were fed a standard diet or an HF diet without or with ITF (0.2 g/day per mouse) during 4 weeks. The HF diet induced an accumulation of large adipocytes, promoted peroxisome proliferator activated receptor gamma (PPARγ)-activated differentiation factors and led to a huge increase in GPR43 expression in the subcutaneous adipose tissue. All those effects were blunted by ITF treatment, which modulated the gut microbiota in favor of bifidobacteria at the expense of Roseburia spp. and of Clostridium cluster XIVa. The dietary modulation of GPR43 expression seems independent of endotoxemia, in view of data obtained in vivo (acute and chronic lipopolysaccharides treatment). In conclusion, ITF, which promote gut fermentation, paradoxically counteract GPR43 overexpression induced in the adipose tissue by an HF diet, a phenomenon that correlates with a beneficial effect on adiposity and with potential decrease in PPARγ-activated processes.status: publishe
    corecore